This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N of the original word. (Contributed by AV, 15-May-2018) (Revised by AV, 21-May-2018) (Revised by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwidx0 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hasheq0 | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) = 0 ↔ 𝑊 = ∅ ) ) | |
| 2 | elfzo0 | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 < ( ♯ ‘ 𝑊 ) ) ) | |
| 3 | elnnne0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ≠ 0 ) ) | |
| 4 | eqneqall | ⊢ ( ( ♯ ‘ 𝑊 ) = 0 → ( ( ♯ ‘ 𝑊 ) ≠ 0 → ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 𝑁 ) ) ) ) | |
| 5 | 4 | com12 | ⊢ ( ( ♯ ‘ 𝑊 ) ≠ 0 → ( ( ♯ ‘ 𝑊 ) = 0 → ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 𝑁 ) ) ) ) |
| 6 | 5 | adantl | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ≠ 0 ) → ( ( ♯ ‘ 𝑊 ) = 0 → ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 𝑁 ) ) ) ) |
| 7 | 3 6 | sylbi | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) = 0 → ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 𝑁 ) ) ) ) |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 < ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) = 0 → ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 𝑁 ) ) ) ) |
| 9 | 2 8 | sylbi | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) = 0 → ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 𝑁 ) ) ) ) |
| 10 | 9 | com13 | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) = 0 → ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 𝑁 ) ) ) ) |
| 11 | 1 10 | sylbird | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 = ∅ → ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 𝑁 ) ) ) ) |
| 12 | 11 | com23 | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 = ∅ → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 𝑁 ) ) ) ) |
| 13 | 12 | imp | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 = ∅ → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 𝑁 ) ) ) |
| 14 | 13 | com12 | ⊢ ( 𝑊 = ∅ → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 𝑁 ) ) ) |
| 15 | simpl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑊 ∈ Word 𝑉 ) |
| 17 | simpl | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑊 ≠ ∅ ) | |
| 18 | elfzoelz | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ℤ ) | |
| 19 | 18 | ad2antll | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑁 ∈ ℤ ) |
| 20 | cshwidx0mod | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 21 | 16 17 19 20 | syl3anc | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 22 | zmodidfzoimp | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) = 𝑁 ) | |
| 23 | 22 | ad2antll | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) = 𝑁 ) |
| 24 | 23 | fveq2d | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 𝑁 ) ) |
| 25 | 21 24 | eqtrd | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 𝑁 ) ) |
| 26 | 25 | ex | ⊢ ( 𝑊 ≠ ∅ → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 𝑁 ) ) ) |
| 27 | 14 26 | pm2.61ine | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 𝑁 ) ) |