This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N (modulo the length of the word) of the original word. (Contributed by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwidx0mod | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ ) → 𝑊 ∈ Word 𝑉 ) | |
| 2 | simp3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 3 | lennncl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 4 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 5 | 3 4 | sylibr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 7 | cshwidxmod | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ ( ( 0 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 8 | 1 2 6 7 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ ( ( 0 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 9 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 10 | 9 | addlidd | ⊢ ( 𝑁 ∈ ℤ → ( 0 + 𝑁 ) = 𝑁 ) |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ ) → ( 0 + 𝑁 ) = 𝑁 ) |
| 12 | 11 | fvoveq1d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ ) → ( 𝑊 ‘ ( ( 0 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 13 | 8 12 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |