This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symbol at index ((n-N)-1) of a word of length n (not 0) cyclically shifted by N positions is the symbol at index (n-1) of the original word. (Contributed by AV, 23-Mar-2018) (Revised by AV, 21-May-2018) (Revised by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwidxm1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) − 1 ) ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 2 | elfzoelz | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ℤ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑁 ∈ ℤ ) |
| 4 | ubmelm1fzo | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 6 | cshwidxmod | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) − 1 ) ) = ( 𝑊 ‘ ( ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) − 1 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) | |
| 7 | 1 3 5 6 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) − 1 ) ) = ( 𝑊 ‘ ( ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) − 1 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 8 | elfzoel2 | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) | |
| 9 | 8 | zcnd | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
| 10 | 2 | zcnd | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ℂ ) |
| 11 | 1cnd | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 1 ∈ ℂ ) | |
| 12 | nnpcan | ⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) − 1 ) + 𝑁 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) | |
| 13 | 9 10 11 12 | syl3anc | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) − 1 ) + 𝑁 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 14 | 13 | oveq1d | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) − 1 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( ♯ ‘ 𝑊 ) − 1 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) − 1 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( ♯ ‘ 𝑊 ) − 1 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 16 | elfzo0 | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 < ( ♯ ‘ 𝑊 ) ) ) | |
| 17 | nnre | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ ) | |
| 18 | peano2rem | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℝ ) | |
| 19 | 17 18 | syl | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℝ ) |
| 20 | nnrp | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) | |
| 21 | 19 20 | jca | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) ) |
| 22 | 21 | 3ad2ant2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 < ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) ) |
| 23 | 16 22 | sylbi | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) ) |
| 24 | nnm1ge0 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → 0 ≤ ( ( ♯ ‘ 𝑊 ) − 1 ) ) | |
| 25 | 24 | 3ad2ant2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 < ( ♯ ‘ 𝑊 ) ) → 0 ≤ ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 26 | 16 25 | sylbi | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 0 ≤ ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 27 | zre | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( ♯ ‘ 𝑊 ) ∈ ℝ ) | |
| 28 | 27 | ltm1d | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( ( ♯ ‘ 𝑊 ) − 1 ) < ( ♯ ‘ 𝑊 ) ) |
| 29 | 8 28 | syl | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) < ( ♯ ‘ 𝑊 ) ) |
| 30 | 23 26 29 | jca32 | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) ∧ ( 0 ≤ ( ( ♯ ‘ 𝑊 ) − 1 ) ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) < ( ♯ ‘ 𝑊 ) ) ) ) |
| 31 | 30 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) ∧ ( 0 ≤ ( ( ♯ ‘ 𝑊 ) − 1 ) ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) < ( ♯ ‘ 𝑊 ) ) ) ) |
| 32 | modid | ⊢ ( ( ( ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) ∧ ( 0 ≤ ( ( ♯ ‘ 𝑊 ) − 1 ) ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) < ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) | |
| 33 | 31 32 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 34 | 15 33 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) − 1 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 35 | 34 | fveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) − 1 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 36 | 7 35 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) − 1 ) ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |