This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N of the original word. (Contributed by AV, 15-May-2018) (Revised by AV, 21-May-2018) (Revised by AV, 30-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshwidx0 | |- ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hasheq0 | |- ( W e. Word V -> ( ( # ` W ) = 0 <-> W = (/) ) ) |
|
| 2 | elfzo0 | |- ( N e. ( 0 ..^ ( # ` W ) ) <-> ( N e. NN0 /\ ( # ` W ) e. NN /\ N < ( # ` W ) ) ) |
|
| 3 | elnnne0 | |- ( ( # ` W ) e. NN <-> ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) ) |
|
| 4 | eqneqall | |- ( ( # ` W ) = 0 -> ( ( # ` W ) =/= 0 -> ( W e. Word V -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) |
|
| 5 | 4 | com12 | |- ( ( # ` W ) =/= 0 -> ( ( # ` W ) = 0 -> ( W e. Word V -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) |
| 6 | 5 | adantl | |- ( ( ( # ` W ) e. NN0 /\ ( # ` W ) =/= 0 ) -> ( ( # ` W ) = 0 -> ( W e. Word V -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) |
| 7 | 3 6 | sylbi | |- ( ( # ` W ) e. NN -> ( ( # ` W ) = 0 -> ( W e. Word V -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) |
| 8 | 7 | 3ad2ant2 | |- ( ( N e. NN0 /\ ( # ` W ) e. NN /\ N < ( # ` W ) ) -> ( ( # ` W ) = 0 -> ( W e. Word V -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) |
| 9 | 2 8 | sylbi | |- ( N e. ( 0 ..^ ( # ` W ) ) -> ( ( # ` W ) = 0 -> ( W e. Word V -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) |
| 10 | 9 | com13 | |- ( W e. Word V -> ( ( # ` W ) = 0 -> ( N e. ( 0 ..^ ( # ` W ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) |
| 11 | 1 10 | sylbird | |- ( W e. Word V -> ( W = (/) -> ( N e. ( 0 ..^ ( # ` W ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) |
| 12 | 11 | com23 | |- ( W e. Word V -> ( N e. ( 0 ..^ ( # ` W ) ) -> ( W = (/) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) ) |
| 13 | 12 | imp | |- ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( W = (/) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) |
| 14 | 13 | com12 | |- ( W = (/) -> ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) |
| 15 | simpl | |- ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> W e. Word V ) |
|
| 16 | 15 | adantl | |- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) ) -> W e. Word V ) |
| 17 | simpl | |- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) ) -> W =/= (/) ) |
|
| 18 | elfzoelz | |- ( N e. ( 0 ..^ ( # ` W ) ) -> N e. ZZ ) |
|
| 19 | 18 | ad2antll | |- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) ) -> N e. ZZ ) |
| 20 | cshwidx0mod | |- ( ( W e. Word V /\ W =/= (/) /\ N e. ZZ ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` ( N mod ( # ` W ) ) ) ) |
|
| 21 | 16 17 19 20 | syl3anc | |- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` ( N mod ( # ` W ) ) ) ) |
| 22 | zmodidfzoimp | |- ( N e. ( 0 ..^ ( # ` W ) ) -> ( N mod ( # ` W ) ) = N ) |
|
| 23 | 22 | ad2antll | |- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) ) -> ( N mod ( # ` W ) ) = N ) |
| 24 | 23 | fveq2d | |- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) ) -> ( W ` ( N mod ( # ` W ) ) ) = ( W ` N ) ) |
| 25 | 21 24 | eqtrd | |- ( ( W =/= (/) /\ ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) |
| 26 | 25 | ex | |- ( W =/= (/) -> ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) ) |
| 27 | 14 26 | pm2.61ine | |- ( ( W e. Word V /\ N e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` 0 ) = ( W ` N ) ) |