This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a cyclically shifted word under its domain without its upper bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cshimadifsn0 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 “ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) = ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) “ ( 0 ..^ ( 𝑁 − 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cshimadifsn | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 “ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) = ( ( 𝐹 cyclShift 𝐽 ) “ ( 1 ..^ 𝑁 ) ) ) | |
| 2 | elfzoel2 | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 3 | elfzom1elp1fzo1 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( 1 ..^ 𝑁 ) ) | |
| 4 | 3 | ex | ⊢ ( 𝑁 ∈ ℤ → ( 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ( 1 ..^ 𝑁 ) ) ) |
| 5 | 2 4 | syl | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ( 1 ..^ 𝑁 ) ) ) |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ( 1 ..^ 𝑁 ) ) ) |
| 7 | 6 | imp | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( 1 ..^ 𝑁 ) ) |
| 8 | elfzo1elm1fzo0 | ⊢ ( 𝑥 ∈ ( 1 ..^ 𝑁 ) → ( 𝑥 − 1 ) ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 1 ..^ 𝑁 ) ) → ( 𝑥 − 1 ) ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) |
| 10 | oveq1 | ⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( 𝑦 + 1 ) = ( ( 𝑥 − 1 ) + 1 ) ) | |
| 11 | 10 | eqeq2d | ⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( 𝑥 = ( 𝑦 + 1 ) ↔ 𝑥 = ( ( 𝑥 − 1 ) + 1 ) ) ) |
| 12 | 11 | adantl | ⊢ ( ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 1 ..^ 𝑁 ) ) ∧ 𝑦 = ( 𝑥 − 1 ) ) → ( 𝑥 = ( 𝑦 + 1 ) ↔ 𝑥 = ( ( 𝑥 − 1 ) + 1 ) ) ) |
| 13 | elfzoelz | ⊢ ( 𝑥 ∈ ( 1 ..^ 𝑁 ) → 𝑥 ∈ ℤ ) | |
| 14 | 13 | zcnd | ⊢ ( 𝑥 ∈ ( 1 ..^ 𝑁 ) → 𝑥 ∈ ℂ ) |
| 15 | npcan1 | ⊢ ( 𝑥 ∈ ℂ → ( ( 𝑥 − 1 ) + 1 ) = 𝑥 ) | |
| 16 | 14 15 | syl | ⊢ ( 𝑥 ∈ ( 1 ..^ 𝑁 ) → ( ( 𝑥 − 1 ) + 1 ) = 𝑥 ) |
| 17 | 16 | eqcomd | ⊢ ( 𝑥 ∈ ( 1 ..^ 𝑁 ) → 𝑥 = ( ( 𝑥 − 1 ) + 1 ) ) |
| 18 | 17 | adantl | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 1 ..^ 𝑁 ) ) → 𝑥 = ( ( 𝑥 − 1 ) + 1 ) ) |
| 19 | 9 12 18 | rspcedvd | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 1 ..^ 𝑁 ) ) → ∃ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) 𝑥 = ( 𝑦 + 1 ) ) |
| 20 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑥 ) = ( ( 𝐹 cyclShift 𝐽 ) ‘ ( 𝑦 + 1 ) ) ) | |
| 21 | 20 | 3ad2ant3 | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ∧ 𝑥 = ( 𝑦 + 1 ) ) → ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑥 ) = ( ( 𝐹 cyclShift 𝐽 ) ‘ ( 𝑦 + 1 ) ) ) |
| 22 | elfzoelz | ⊢ ( 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) → 𝑦 ∈ ℤ ) | |
| 23 | 22 | zcnd | ⊢ ( 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) → 𝑦 ∈ ℂ ) |
| 24 | 23 | adantl | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ℂ ) |
| 25 | elfzoelz | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ℤ ) | |
| 26 | 25 | zcnd | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → 𝐽 ∈ ℂ ) |
| 27 | 26 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → 𝐽 ∈ ℂ ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → 𝐽 ∈ ℂ ) |
| 29 | 1cnd | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → 1 ∈ ℂ ) | |
| 30 | add32r | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑦 + ( 𝐽 + 1 ) ) = ( ( 𝑦 + 1 ) + 𝐽 ) ) | |
| 31 | 24 28 29 30 | syl3anc | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( 𝑦 + ( 𝐽 + 1 ) ) = ( ( 𝑦 + 1 ) + 𝐽 ) ) |
| 32 | 31 | fvoveq1d | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ ( ( 𝑦 + ( 𝐽 + 1 ) ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( ( 𝑦 + 1 ) + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
| 33 | simpl1 | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → 𝐹 ∈ Word 𝑆 ) | |
| 34 | 25 | peano2zd | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝐽 + 1 ) ∈ ℤ ) |
| 35 | 34 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐽 + 1 ) ∈ ℤ ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( 𝐽 + 1 ) ∈ ℤ ) |
| 37 | fzossrbm1 | ⊢ ( 𝑁 ∈ ℤ → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑁 ) ) | |
| 38 | 2 37 | syl | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
| 39 | 38 | sseld | ⊢ ( 𝐽 ∈ ( 0 ..^ 𝑁 ) → ( 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) → 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 40 | 39 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) → 𝑦 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 41 | 40 | imp | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ( 0 ..^ 𝑁 ) ) |
| 42 | oveq2 | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( 0 ..^ 𝑁 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 43 | 42 | eleq2d | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 44 | 43 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( 𝑦 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 46 | 41 45 | mpbid | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 47 | cshwidxmod | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ ( 𝐽 + 1 ) ∈ ℤ ∧ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ ( ( 𝑦 + ( 𝐽 + 1 ) ) mod ( ♯ ‘ 𝐹 ) ) ) ) | |
| 48 | 33 36 46 47 | syl3anc | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ‘ 𝑦 ) = ( 𝐹 ‘ ( ( 𝑦 + ( 𝐽 + 1 ) ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
| 49 | 25 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → 𝐽 ∈ ℤ ) |
| 50 | 49 | adantr | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → 𝐽 ∈ ℤ ) |
| 51 | fzo0ss1 | ⊢ ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ 𝑁 ) | |
| 52 | 2 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 53 | 52 3 | sylan | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( 1 ..^ 𝑁 ) ) |
| 54 | 51 53 | sselid | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 55 | 42 | eleq2d | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( ( 𝑦 + 1 ) ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑦 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 56 | 55 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑦 + 1 ) ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑦 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 57 | 56 | adantr | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( ( 𝑦 + 1 ) ∈ ( 0 ..^ 𝑁 ) ↔ ( 𝑦 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 58 | 54 57 | mpbid | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 59 | cshwidxmod | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝐽 ∈ ℤ ∧ ( 𝑦 + 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 cyclShift 𝐽 ) ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( ( ( 𝑦 + 1 ) + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ) ) | |
| 60 | 33 50 58 59 | syl3anc | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( ( 𝐹 cyclShift 𝐽 ) ‘ ( 𝑦 + 1 ) ) = ( 𝐹 ‘ ( ( ( 𝑦 + 1 ) + 𝐽 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
| 61 | 32 48 60 | 3eqtr4rd | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( ( 𝐹 cyclShift 𝐽 ) ‘ ( 𝑦 + 1 ) ) = ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ‘ 𝑦 ) ) |
| 62 | 61 | 3adant3 | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ∧ 𝑥 = ( 𝑦 + 1 ) ) → ( ( 𝐹 cyclShift 𝐽 ) ‘ ( 𝑦 + 1 ) ) = ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ‘ 𝑦 ) ) |
| 63 | 21 62 | eqtrd | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ∧ 𝑥 = ( 𝑦 + 1 ) ) → ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑥 ) = ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ‘ 𝑦 ) ) |
| 64 | 63 | eqeq1d | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ∧ 𝑥 = ( 𝑦 + 1 ) ) → ( ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑥 ) = 𝑧 ↔ ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ‘ 𝑦 ) = 𝑧 ) ) |
| 65 | 7 19 64 | rexxfrd2 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ∃ 𝑥 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑥 ) = 𝑧 ↔ ∃ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ‘ 𝑦 ) = 𝑧 ) ) |
| 66 | 65 | abbidv | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → { 𝑧 ∣ ∃ 𝑥 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑥 ) = 𝑧 } = { 𝑧 ∣ ∃ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ‘ 𝑦 ) = 𝑧 } ) |
| 67 | 25 | anim2i | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ∈ Word 𝑆 ∧ 𝐽 ∈ ℤ ) ) |
| 68 | 67 | 3adant2 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ∈ Word 𝑆 ∧ 𝐽 ∈ ℤ ) ) |
| 69 | cshwfn | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝐽 ∈ ℤ ) → ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 70 | 68 69 | syl | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 71 | fnfun | ⊢ ( ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → Fun ( 𝐹 cyclShift 𝐽 ) ) | |
| 72 | 71 | adantl | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → Fun ( 𝐹 cyclShift 𝐽 ) ) |
| 73 | 42 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 0 ..^ 𝑁 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 74 | 51 73 | sseqtrid | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 75 | 74 | adantr | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 1 ..^ 𝑁 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 76 | fndm | ⊢ ( ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → dom ( 𝐹 cyclShift 𝐽 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 77 | 76 | adantl | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → dom ( 𝐹 cyclShift 𝐽 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 78 | 75 77 | sseqtrrd | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 1 ..^ 𝑁 ) ⊆ dom ( 𝐹 cyclShift 𝐽 ) ) |
| 79 | 72 78 | jca | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 cyclShift 𝐽 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( Fun ( 𝐹 cyclShift 𝐽 ) ∧ ( 1 ..^ 𝑁 ) ⊆ dom ( 𝐹 cyclShift 𝐽 ) ) ) |
| 80 | 70 79 | mpdan | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( Fun ( 𝐹 cyclShift 𝐽 ) ∧ ( 1 ..^ 𝑁 ) ⊆ dom ( 𝐹 cyclShift 𝐽 ) ) ) |
| 81 | dfimafn | ⊢ ( ( Fun ( 𝐹 cyclShift 𝐽 ) ∧ ( 1 ..^ 𝑁 ) ⊆ dom ( 𝐹 cyclShift 𝐽 ) ) → ( ( 𝐹 cyclShift 𝐽 ) “ ( 1 ..^ 𝑁 ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑥 ) = 𝑧 } ) | |
| 82 | 80 81 | syl | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐹 cyclShift 𝐽 ) “ ( 1 ..^ 𝑁 ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ ( 1 ..^ 𝑁 ) ( ( 𝐹 cyclShift 𝐽 ) ‘ 𝑥 ) = 𝑧 } ) |
| 83 | 34 | anim2i | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ∈ Word 𝑆 ∧ ( 𝐽 + 1 ) ∈ ℤ ) ) |
| 84 | 83 | 3adant2 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ∈ Word 𝑆 ∧ ( 𝐽 + 1 ) ∈ ℤ ) ) |
| 85 | cshwfn | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ ( 𝐽 + 1 ) ∈ ℤ ) → ( 𝐹 cyclShift ( 𝐽 + 1 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 86 | 84 85 | syl | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 cyclShift ( 𝐽 + 1 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 87 | fnfun | ⊢ ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → Fun ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ) | |
| 88 | 87 | adantl | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 cyclShift ( 𝐽 + 1 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → Fun ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ) |
| 89 | 38 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
| 90 | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 𝑁 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 𝑁 ) ) | |
| 91 | 90 | eqcoms | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 𝑁 ) ) |
| 92 | 91 | 3ad2ant2 | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 𝑁 ) ) |
| 93 | 89 92 | sseqtrrd | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 94 | 93 | adantr | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 cyclShift ( 𝐽 + 1 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 95 | fndm | ⊢ ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → dom ( 𝐹 cyclShift ( 𝐽 + 1 ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 96 | 95 | adantl | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 cyclShift ( 𝐽 + 1 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → dom ( 𝐹 cyclShift ( 𝐽 + 1 ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 97 | 94 96 | sseqtrrd | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 cyclShift ( 𝐽 + 1 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ dom ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ) |
| 98 | 88 97 | jca | ⊢ ( ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) ∧ ( 𝐹 cyclShift ( 𝐽 + 1 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( Fun ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ∧ ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ dom ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ) ) |
| 99 | 86 98 | mpdan | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( Fun ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ∧ ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ dom ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ) ) |
| 100 | dfimafn | ⊢ ( ( Fun ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ∧ ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ dom ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ) → ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) “ ( 0 ..^ ( 𝑁 − 1 ) ) ) = { 𝑧 ∣ ∃ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ‘ 𝑦 ) = 𝑧 } ) | |
| 101 | 99 100 | syl | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) “ ( 0 ..^ ( 𝑁 − 1 ) ) ) = { 𝑧 ∣ ∃ 𝑦 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) ‘ 𝑦 ) = 𝑧 } ) |
| 102 | 66 82 101 | 3eqtr4d | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐹 cyclShift 𝐽 ) “ ( 1 ..^ 𝑁 ) ) = ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) “ ( 0 ..^ ( 𝑁 − 1 ) ) ) ) |
| 103 | 1 102 | eqtrd | ⊢ ( ( 𝐹 ∈ Word 𝑆 ∧ 𝑁 = ( ♯ ‘ 𝐹 ) ∧ 𝐽 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 “ ( ( 0 ..^ 𝑁 ) ∖ { 𝐽 } ) ) = ( ( 𝐹 cyclShift ( 𝐽 + 1 ) ) “ ( 0 ..^ ( 𝑁 − 1 ) ) ) ) |