This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of class substitution over ordered pairs. (Contributed by Drahflow, 25-Sep-2015) (Revised by Mario Carneiro, 29-Oct-2015) (Revised by ML, 25-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbopg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 〈 𝐶 , 𝐷 〉 = 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbif | ⊢ ⦋ 𝐴 / 𝑥 ⦌ if ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) , { { 𝐶 } , { 𝐶 , 𝐷 } } , ∅ ) = if ( [ 𝐴 / 𝑥 ] ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) , ⦋ 𝐴 / 𝑥 ⦌ { { 𝐶 } , { 𝐶 , 𝐷 } } , ⦋ 𝐴 / 𝑥 ⦌ ∅ ) | |
| 2 | sbcan | ⊢ ( [ 𝐴 / 𝑥 ] ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ↔ ( [ 𝐴 / 𝑥 ] 𝐶 ∈ V ∧ [ 𝐴 / 𝑥 ] 𝐷 ∈ V ) ) | |
| 3 | sbcel1g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐶 ∈ V ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ V ) ) | |
| 4 | sbcel1g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐷 ∈ V ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∈ V ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝐶 ∈ V ∧ [ 𝐴 / 𝑥 ] 𝐷 ∈ V ) ↔ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ V ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∈ V ) ) ) |
| 6 | 2 5 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ↔ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ V ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∈ V ) ) ) |
| 7 | csbprg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { { 𝐶 } , { 𝐶 , 𝐷 } } = { ⦋ 𝐴 / 𝑥 ⦌ { 𝐶 } , ⦋ 𝐴 / 𝑥 ⦌ { 𝐶 , 𝐷 } } ) | |
| 8 | csbsng | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 𝐶 } = { ⦋ 𝐴 / 𝑥 ⦌ 𝐶 } ) | |
| 9 | csbprg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 𝐶 , 𝐷 } = { ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 } ) | |
| 10 | 8 9 | preq12d | ⊢ ( 𝐴 ∈ 𝑉 → { ⦋ 𝐴 / 𝑥 ⦌ { 𝐶 } , ⦋ 𝐴 / 𝑥 ⦌ { 𝐶 , 𝐷 } } = { { ⦋ 𝐴 / 𝑥 ⦌ 𝐶 } , { ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 } } ) |
| 11 | 7 10 | eqtrd | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { { 𝐶 } , { 𝐶 , 𝐷 } } = { { ⦋ 𝐴 / 𝑥 ⦌ 𝐶 } , { ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 } } ) |
| 12 | csbconstg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ∅ = ∅ ) | |
| 13 | 6 11 12 | ifbieq12d | ⊢ ( 𝐴 ∈ 𝑉 → if ( [ 𝐴 / 𝑥 ] ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) , ⦋ 𝐴 / 𝑥 ⦌ { { 𝐶 } , { 𝐶 , 𝐷 } } , ⦋ 𝐴 / 𝑥 ⦌ ∅ ) = if ( ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ V ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∈ V ) , { { ⦋ 𝐴 / 𝑥 ⦌ 𝐶 } , { ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 } } , ∅ ) ) |
| 14 | 1 13 | eqtrid | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ if ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) , { { 𝐶 } , { 𝐶 , 𝐷 } } , ∅ ) = if ( ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ V ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∈ V ) , { { ⦋ 𝐴 / 𝑥 ⦌ 𝐶 } , { ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 } } , ∅ ) ) |
| 15 | dfopif | ⊢ 〈 𝐶 , 𝐷 〉 = if ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) , { { 𝐶 } , { 𝐶 , 𝐷 } } , ∅ ) | |
| 16 | 15 | csbeq2i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 〈 𝐶 , 𝐷 〉 = ⦋ 𝐴 / 𝑥 ⦌ if ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) , { { 𝐶 } , { 𝐶 , 𝐷 } } , ∅ ) |
| 17 | dfopif | ⊢ 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 〉 = if ( ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∈ V ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∈ V ) , { { ⦋ 𝐴 / 𝑥 ⦌ 𝐶 } , { ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 } } , ∅ ) | |
| 18 | 14 16 17 | 3eqtr4g | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 〈 𝐶 , 𝐷 〉 = 〈 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 〉 ) |