This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through the conditional operator. (Contributed by NM, 24-Feb-2013) (Revised by NM, 19-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbif | ⊢ ⦋ 𝐴 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = if ( [ 𝐴 / 𝑥 ] 𝜑 , ⦋ 𝐴 / 𝑥 ⦌ 𝐵 , ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = ⦋ 𝐴 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) ) | |
| 2 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
| 3 | csbeq1 | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) | |
| 4 | csbeq1 | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) | |
| 5 | 2 3 4 | ifbieq12d | ⊢ ( 𝑦 = 𝐴 → if ( [ 𝑦 / 𝑥 ] 𝜑 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = if ( [ 𝐴 / 𝑥 ] 𝜑 , ⦋ 𝐴 / 𝑥 ⦌ 𝐵 , ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 6 | 1 5 | eqeq12d | ⊢ ( 𝑦 = 𝐴 → ( ⦋ 𝑦 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = if ( [ 𝑦 / 𝑥 ] 𝜑 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = if ( [ 𝐴 / 𝑥 ] 𝜑 , ⦋ 𝐴 / 𝑥 ⦌ 𝐵 , ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) ) |
| 7 | vex | ⊢ 𝑦 ∈ V | |
| 8 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 | |
| 9 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
| 10 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 | |
| 11 | 8 9 10 | nfif | ⊢ Ⅎ 𝑥 if ( [ 𝑦 / 𝑥 ] 𝜑 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 12 | sbequ12 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 13 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 14 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) | |
| 15 | 12 13 14 | ifbieq12d | ⊢ ( 𝑥 = 𝑦 → if ( 𝜑 , 𝐵 , 𝐶 ) = if ( [ 𝑦 / 𝑥 ] 𝜑 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 16 | 7 11 15 | csbief | ⊢ ⦋ 𝑦 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = if ( [ 𝑦 / 𝑥 ] 𝜑 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 17 | 6 16 | vtoclg | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = if ( [ 𝐴 / 𝑥 ] 𝜑 , ⦋ 𝐴 / 𝑥 ⦌ 𝐵 , ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 18 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = ∅ ) | |
| 19 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) | |
| 20 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ∅ ) | |
| 21 | 19 20 | ifeq12d | ⊢ ( ¬ 𝐴 ∈ V → if ( [ 𝐴 / 𝑥 ] 𝜑 , ⦋ 𝐴 / 𝑥 ⦌ 𝐵 , ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) = if ( [ 𝐴 / 𝑥 ] 𝜑 , ∅ , ∅ ) ) |
| 22 | ifid | ⊢ if ( [ 𝐴 / 𝑥 ] 𝜑 , ∅ , ∅ ) = ∅ | |
| 23 | 21 22 | eqtr2di | ⊢ ( ¬ 𝐴 ∈ V → ∅ = if ( [ 𝐴 / 𝑥 ] 𝜑 , ⦋ 𝐴 / 𝑥 ⦌ 𝐵 , ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 24 | 18 23 | eqtrd | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = if ( [ 𝐴 / 𝑥 ] 𝜑 , ⦋ 𝐴 / 𝑥 ⦌ 𝐵 , ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 25 | 17 24 | pm2.61i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = if ( [ 𝐴 / 𝑥 ] 𝜑 , ⦋ 𝐴 / 𝑥 ⦌ 𝐵 , ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |