This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through a pair of classes. (Contributed by Alexander van der Vekens, 4-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbprg | ⊢ ( 𝐶 ∈ 𝑉 → ⦋ 𝐶 / 𝑥 ⦌ { 𝐴 , 𝐵 } = { ⦋ 𝐶 / 𝑥 ⦌ 𝐴 , ⦋ 𝐶 / 𝑥 ⦌ 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbun | ⊢ ⦋ 𝐶 / 𝑥 ⦌ ( { 𝐴 } ∪ { 𝐵 } ) = ( ⦋ 𝐶 / 𝑥 ⦌ { 𝐴 } ∪ ⦋ 𝐶 / 𝑥 ⦌ { 𝐵 } ) | |
| 2 | csbsng | ⊢ ( 𝐶 ∈ 𝑉 → ⦋ 𝐶 / 𝑥 ⦌ { 𝐴 } = { ⦋ 𝐶 / 𝑥 ⦌ 𝐴 } ) | |
| 3 | csbsng | ⊢ ( 𝐶 ∈ 𝑉 → ⦋ 𝐶 / 𝑥 ⦌ { 𝐵 } = { ⦋ 𝐶 / 𝑥 ⦌ 𝐵 } ) | |
| 4 | 2 3 | uneq12d | ⊢ ( 𝐶 ∈ 𝑉 → ( ⦋ 𝐶 / 𝑥 ⦌ { 𝐴 } ∪ ⦋ 𝐶 / 𝑥 ⦌ { 𝐵 } ) = ( { ⦋ 𝐶 / 𝑥 ⦌ 𝐴 } ∪ { ⦋ 𝐶 / 𝑥 ⦌ 𝐵 } ) ) |
| 5 | 1 4 | eqtrid | ⊢ ( 𝐶 ∈ 𝑉 → ⦋ 𝐶 / 𝑥 ⦌ ( { 𝐴 } ∪ { 𝐵 } ) = ( { ⦋ 𝐶 / 𝑥 ⦌ 𝐴 } ∪ { ⦋ 𝐶 / 𝑥 ⦌ 𝐵 } ) ) |
| 6 | df-pr | ⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) | |
| 7 | 6 | csbeq2i | ⊢ ⦋ 𝐶 / 𝑥 ⦌ { 𝐴 , 𝐵 } = ⦋ 𝐶 / 𝑥 ⦌ ( { 𝐴 } ∪ { 𝐵 } ) |
| 8 | df-pr | ⊢ { ⦋ 𝐶 / 𝑥 ⦌ 𝐴 , ⦋ 𝐶 / 𝑥 ⦌ 𝐵 } = ( { ⦋ 𝐶 / 𝑥 ⦌ 𝐴 } ∪ { ⦋ 𝐶 / 𝑥 ⦌ 𝐵 } ) | |
| 9 | 5 7 8 | 3eqtr4g | ⊢ ( 𝐶 ∈ 𝑉 → ⦋ 𝐶 / 𝑥 ⦌ { 𝐴 , 𝐵 } = { ⦋ 𝐶 / 𝑥 ⦌ 𝐴 , ⦋ 𝐶 / 𝑥 ⦌ 𝐵 } ) |