This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute proper substitution through the singleton of a class. csbsng is derived from the virtual deduction proof csbsngVD . (Contributed by Alan Sare, 10-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbsng | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 𝐵 } = { ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbab | ⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝑦 = 𝐵 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 = 𝐵 } | |
| 2 | sbceq2g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑦 = 𝐵 ↔ 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) | |
| 3 | 2 | abbidv | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 = 𝐵 } = { 𝑦 ∣ 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } ) |
| 4 | 1 3 | eqtrid | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝑦 = 𝐵 } = { 𝑦 ∣ 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } ) |
| 5 | df-sn | ⊢ { 𝐵 } = { 𝑦 ∣ 𝑦 = 𝐵 } | |
| 6 | 5 | csbeq2i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝐵 } = ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝑦 = 𝐵 } |
| 7 | df-sn | ⊢ { ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } = { 𝑦 ∣ 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } | |
| 8 | 4 6 7 | 3eqtr4g | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 𝐵 } = { ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } ) |