This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Chinese Remainder Theorem: the function that maps x to its remainder classes mod M and mod N is 1-1 and onto when M and N are coprime. (Contributed by Mario Carneiro, 24-Feb-2014) (Proof shortened by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crth.1 | ⊢ 𝑆 = ( 0 ..^ ( 𝑀 · 𝑁 ) ) | |
| crth.2 | ⊢ 𝑇 = ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) | ||
| crth.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ 〈 ( 𝑥 mod 𝑀 ) , ( 𝑥 mod 𝑁 ) 〉 ) | ||
| crth.4 | ⊢ ( 𝜑 → ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) | ||
| Assertion | crth | ⊢ ( 𝜑 → 𝐹 : 𝑆 –1-1-onto→ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crth.1 | ⊢ 𝑆 = ( 0 ..^ ( 𝑀 · 𝑁 ) ) | |
| 2 | crth.2 | ⊢ 𝑇 = ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) | |
| 3 | crth.3 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ 〈 ( 𝑥 mod 𝑀 ) , ( 𝑥 mod 𝑁 ) 〉 ) | |
| 4 | crth.4 | ⊢ ( 𝜑 → ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) | |
| 5 | elfzoelz | ⊢ ( 𝑥 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) → 𝑥 ∈ ℤ ) | |
| 6 | 5 1 | eleq2s | ⊢ ( 𝑥 ∈ 𝑆 → 𝑥 ∈ ℤ ) |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝑥 ∈ ℤ ) | |
| 8 | 4 | simp1d | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝑀 ∈ ℕ ) |
| 10 | zmodfzo | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → ( 𝑥 mod 𝑀 ) ∈ ( 0 ..^ 𝑀 ) ) | |
| 11 | 7 9 10 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝑥 mod 𝑀 ) ∈ ( 0 ..^ 𝑀 ) ) |
| 12 | 4 | simp2d | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 𝑁 ∈ ℕ ) |
| 14 | zmodfzo | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑥 mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) | |
| 15 | 7 13 14 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → ( 𝑥 mod 𝑁 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 16 | 11 15 | opelxpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 〈 ( 𝑥 mod 𝑀 ) , ( 𝑥 mod 𝑁 ) 〉 ∈ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ) |
| 17 | 16 2 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℤ ) → 〈 ( 𝑥 mod 𝑀 ) , ( 𝑥 mod 𝑁 ) 〉 ∈ 𝑇 ) |
| 18 | 6 17 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 〈 ( 𝑥 mod 𝑀 ) , ( 𝑥 mod 𝑁 ) 〉 ∈ 𝑇 ) |
| 19 | 18 3 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ 𝑇 ) |
| 20 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 mod 𝑀 ) = ( 𝑦 mod 𝑀 ) ) | |
| 21 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 mod 𝑁 ) = ( 𝑦 mod 𝑁 ) ) | |
| 22 | 20 21 | opeq12d | ⊢ ( 𝑥 = 𝑦 → 〈 ( 𝑥 mod 𝑀 ) , ( 𝑥 mod 𝑁 ) 〉 = 〈 ( 𝑦 mod 𝑀 ) , ( 𝑦 mod 𝑁 ) 〉 ) |
| 23 | opex | ⊢ 〈 ( 𝑦 mod 𝑀 ) , ( 𝑦 mod 𝑁 ) 〉 ∈ V | |
| 24 | 22 3 23 | fvmpt | ⊢ ( 𝑦 ∈ 𝑆 → ( 𝐹 ‘ 𝑦 ) = 〈 ( 𝑦 mod 𝑀 ) , ( 𝑦 mod 𝑁 ) 〉 ) |
| 25 | 24 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝐹 ‘ 𝑦 ) = 〈 ( 𝑦 mod 𝑀 ) , ( 𝑦 mod 𝑁 ) 〉 ) |
| 26 | oveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 mod 𝑀 ) = ( 𝑧 mod 𝑀 ) ) | |
| 27 | oveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 mod 𝑁 ) = ( 𝑧 mod 𝑁 ) ) | |
| 28 | 26 27 | opeq12d | ⊢ ( 𝑥 = 𝑧 → 〈 ( 𝑥 mod 𝑀 ) , ( 𝑥 mod 𝑁 ) 〉 = 〈 ( 𝑧 mod 𝑀 ) , ( 𝑧 mod 𝑁 ) 〉 ) |
| 29 | opex | ⊢ 〈 ( 𝑧 mod 𝑀 ) , ( 𝑧 mod 𝑁 ) 〉 ∈ V | |
| 30 | 28 3 29 | fvmpt | ⊢ ( 𝑧 ∈ 𝑆 → ( 𝐹 ‘ 𝑧 ) = 〈 ( 𝑧 mod 𝑀 ) , ( 𝑧 mod 𝑁 ) 〉 ) |
| 31 | 30 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝐹 ‘ 𝑧 ) = 〈 ( 𝑧 mod 𝑀 ) , ( 𝑧 mod 𝑁 ) 〉 ) |
| 32 | 25 31 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ 〈 ( 𝑦 mod 𝑀 ) , ( 𝑦 mod 𝑁 ) 〉 = 〈 ( 𝑧 mod 𝑀 ) , ( 𝑧 mod 𝑁 ) 〉 ) ) |
| 33 | ovex | ⊢ ( 𝑦 mod 𝑀 ) ∈ V | |
| 34 | ovex | ⊢ ( 𝑦 mod 𝑁 ) ∈ V | |
| 35 | 33 34 | opth | ⊢ ( 〈 ( 𝑦 mod 𝑀 ) , ( 𝑦 mod 𝑁 ) 〉 = 〈 ( 𝑧 mod 𝑀 ) , ( 𝑧 mod 𝑁 ) 〉 ↔ ( ( 𝑦 mod 𝑀 ) = ( 𝑧 mod 𝑀 ) ∧ ( 𝑦 mod 𝑁 ) = ( 𝑧 mod 𝑁 ) ) ) |
| 36 | 32 35 | bitrdi | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ↔ ( ( 𝑦 mod 𝑀 ) = ( 𝑧 mod 𝑀 ) ∧ ( 𝑦 mod 𝑁 ) = ( 𝑧 mod 𝑁 ) ) ) ) |
| 37 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑀 ∈ ℕ ) |
| 38 | 37 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑀 ∈ ℤ ) |
| 39 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑁 ∈ ℕ ) |
| 40 | 39 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑁 ∈ ℤ ) |
| 41 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) | |
| 42 | 41 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑦 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ) |
| 43 | elfzoelz | ⊢ ( 𝑦 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) → 𝑦 ∈ ℤ ) | |
| 44 | 42 43 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑦 ∈ ℤ ) |
| 45 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ 𝑆 ) | |
| 46 | 45 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ) |
| 47 | elfzoelz | ⊢ ( 𝑧 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) → 𝑧 ∈ ℤ ) | |
| 48 | 46 47 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ ℤ ) |
| 49 | 44 48 | zsubcld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 − 𝑧 ) ∈ ℤ ) |
| 50 | 4 | simp3d | ⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑀 gcd 𝑁 ) = 1 ) |
| 52 | coprmdvds2 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑦 − 𝑧 ) ∈ ℤ ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( ( 𝑀 ∥ ( 𝑦 − 𝑧 ) ∧ 𝑁 ∥ ( 𝑦 − 𝑧 ) ) → ( 𝑀 · 𝑁 ) ∥ ( 𝑦 − 𝑧 ) ) ) | |
| 53 | 38 40 49 51 52 | syl31anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑀 ∥ ( 𝑦 − 𝑧 ) ∧ 𝑁 ∥ ( 𝑦 − 𝑧 ) ) → ( 𝑀 · 𝑁 ) ∥ ( 𝑦 − 𝑧 ) ) ) |
| 54 | moddvds | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 𝑦 mod 𝑀 ) = ( 𝑧 mod 𝑀 ) ↔ 𝑀 ∥ ( 𝑦 − 𝑧 ) ) ) | |
| 55 | 37 44 48 54 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑦 mod 𝑀 ) = ( 𝑧 mod 𝑀 ) ↔ 𝑀 ∥ ( 𝑦 − 𝑧 ) ) ) |
| 56 | moddvds | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 𝑦 mod 𝑁 ) = ( 𝑧 mod 𝑁 ) ↔ 𝑁 ∥ ( 𝑦 − 𝑧 ) ) ) | |
| 57 | 39 44 48 56 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑦 mod 𝑁 ) = ( 𝑧 mod 𝑁 ) ↔ 𝑁 ∥ ( 𝑦 − 𝑧 ) ) ) |
| 58 | 55 57 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( ( 𝑦 mod 𝑀 ) = ( 𝑧 mod 𝑀 ) ∧ ( 𝑦 mod 𝑁 ) = ( 𝑧 mod 𝑁 ) ) ↔ ( 𝑀 ∥ ( 𝑦 − 𝑧 ) ∧ 𝑁 ∥ ( 𝑦 − 𝑧 ) ) ) ) |
| 59 | 44 | zred | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑦 ∈ ℝ ) |
| 60 | 37 39 | nnmulcld | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑀 · 𝑁 ) ∈ ℕ ) |
| 61 | 60 | nnrpd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑀 · 𝑁 ) ∈ ℝ+ ) |
| 62 | elfzole1 | ⊢ ( 𝑦 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) → 0 ≤ 𝑦 ) | |
| 63 | 42 62 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 0 ≤ 𝑦 ) |
| 64 | elfzolt2 | ⊢ ( 𝑦 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) → 𝑦 < ( 𝑀 · 𝑁 ) ) | |
| 65 | 42 64 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑦 < ( 𝑀 · 𝑁 ) ) |
| 66 | modid | ⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( 𝑀 · 𝑁 ) ∈ ℝ+ ) ∧ ( 0 ≤ 𝑦 ∧ 𝑦 < ( 𝑀 · 𝑁 ) ) ) → ( 𝑦 mod ( 𝑀 · 𝑁 ) ) = 𝑦 ) | |
| 67 | 59 61 63 65 66 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 mod ( 𝑀 · 𝑁 ) ) = 𝑦 ) |
| 68 | 48 | zred | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 ∈ ℝ ) |
| 69 | elfzole1 | ⊢ ( 𝑧 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) → 0 ≤ 𝑧 ) | |
| 70 | 46 69 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 0 ≤ 𝑧 ) |
| 71 | elfzolt2 | ⊢ ( 𝑧 ∈ ( 0 ..^ ( 𝑀 · 𝑁 ) ) → 𝑧 < ( 𝑀 · 𝑁 ) ) | |
| 72 | 46 71 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → 𝑧 < ( 𝑀 · 𝑁 ) ) |
| 73 | modid | ⊢ ( ( ( 𝑧 ∈ ℝ ∧ ( 𝑀 · 𝑁 ) ∈ ℝ+ ) ∧ ( 0 ≤ 𝑧 ∧ 𝑧 < ( 𝑀 · 𝑁 ) ) ) → ( 𝑧 mod ( 𝑀 · 𝑁 ) ) = 𝑧 ) | |
| 74 | 68 61 70 72 73 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑧 mod ( 𝑀 · 𝑁 ) ) = 𝑧 ) |
| 75 | 67 74 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑦 mod ( 𝑀 · 𝑁 ) ) = ( 𝑧 mod ( 𝑀 · 𝑁 ) ) ↔ 𝑦 = 𝑧 ) ) |
| 76 | moddvds | ⊢ ( ( ( 𝑀 · 𝑁 ) ∈ ℕ ∧ 𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 𝑦 mod ( 𝑀 · 𝑁 ) ) = ( 𝑧 mod ( 𝑀 · 𝑁 ) ) ↔ ( 𝑀 · 𝑁 ) ∥ ( 𝑦 − 𝑧 ) ) ) | |
| 77 | 60 44 48 76 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑦 mod ( 𝑀 · 𝑁 ) ) = ( 𝑧 mod ( 𝑀 · 𝑁 ) ) ↔ ( 𝑀 · 𝑁 ) ∥ ( 𝑦 − 𝑧 ) ) ) |
| 78 | 75 77 | bitr3d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑦 = 𝑧 ↔ ( 𝑀 · 𝑁 ) ∥ ( 𝑦 − 𝑧 ) ) ) |
| 79 | 53 58 78 | 3imtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( ( 𝑦 mod 𝑀 ) = ( 𝑧 mod 𝑀 ) ∧ ( 𝑦 mod 𝑁 ) = ( 𝑧 mod 𝑁 ) ) → 𝑦 = 𝑧 ) ) |
| 80 | 36 79 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 81 | 80 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
| 82 | dff13 | ⊢ ( 𝐹 : 𝑆 –1-1→ 𝑇 ↔ ( 𝐹 : 𝑆 ⟶ 𝑇 ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) | |
| 83 | 19 81 82 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : 𝑆 –1-1→ 𝑇 ) |
| 84 | nnnn0 | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) | |
| 85 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 86 | nn0mulcl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 · 𝑁 ) ∈ ℕ0 ) | |
| 87 | hashfzo0 | ⊢ ( ( 𝑀 · 𝑁 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ) = ( 𝑀 · 𝑁 ) ) | |
| 88 | 86 87 | syl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ) = ( 𝑀 · 𝑁 ) ) |
| 89 | fzofi | ⊢ ( 0 ..^ 𝑀 ) ∈ Fin | |
| 90 | fzofi | ⊢ ( 0 ..^ 𝑁 ) ∈ Fin | |
| 91 | hashxp | ⊢ ( ( ( 0 ..^ 𝑀 ) ∈ Fin ∧ ( 0 ..^ 𝑁 ) ∈ Fin ) → ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ) = ( ( ♯ ‘ ( 0 ..^ 𝑀 ) ) · ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) ) | |
| 92 | 89 90 91 | mp2an | ⊢ ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ) = ( ( ♯ ‘ ( 0 ..^ 𝑀 ) ) · ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) |
| 93 | hashfzo0 | ⊢ ( 𝑀 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑀 ) ) = 𝑀 ) | |
| 94 | hashfzo0 | ⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ 𝑁 ) ) = 𝑁 ) | |
| 95 | 93 94 | oveqan12d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ ( 0 ..^ 𝑀 ) ) · ( ♯ ‘ ( 0 ..^ 𝑁 ) ) ) = ( 𝑀 · 𝑁 ) ) |
| 96 | 92 95 | eqtrid | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ) = ( 𝑀 · 𝑁 ) ) |
| 97 | 88 96 | eqtr4d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ♯ ‘ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ) = ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ) ) |
| 98 | fzofi | ⊢ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ∈ Fin | |
| 99 | xpfi | ⊢ ( ( ( 0 ..^ 𝑀 ) ∈ Fin ∧ ( 0 ..^ 𝑁 ) ∈ Fin ) → ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ∈ Fin ) | |
| 100 | 89 90 99 | mp2an | ⊢ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ∈ Fin |
| 101 | hashen | ⊢ ( ( ( 0 ..^ ( 𝑀 · 𝑁 ) ) ∈ Fin ∧ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ∈ Fin ) → ( ( ♯ ‘ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ) = ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ) ↔ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ≈ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ) ) | |
| 102 | 98 100 101 | mp2an | ⊢ ( ( ♯ ‘ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ) = ( ♯ ‘ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ) ↔ ( 0 ..^ ( 𝑀 · 𝑁 ) ) ≈ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ) |
| 103 | 97 102 | sylib | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 ..^ ( 𝑀 · 𝑁 ) ) ≈ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ) |
| 104 | 84 85 103 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 0 ..^ ( 𝑀 · 𝑁 ) ) ≈ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ) |
| 105 | 8 12 104 | syl2anc | ⊢ ( 𝜑 → ( 0 ..^ ( 𝑀 · 𝑁 ) ) ≈ ( ( 0 ..^ 𝑀 ) × ( 0 ..^ 𝑁 ) ) ) |
| 106 | 105 1 2 | 3brtr4g | ⊢ ( 𝜑 → 𝑆 ≈ 𝑇 ) |
| 107 | 2 100 | eqeltri | ⊢ 𝑇 ∈ Fin |
| 108 | f1finf1o | ⊢ ( ( 𝑆 ≈ 𝑇 ∧ 𝑇 ∈ Fin ) → ( 𝐹 : 𝑆 –1-1→ 𝑇 ↔ 𝐹 : 𝑆 –1-1-onto→ 𝑇 ) ) | |
| 109 | 106 107 108 | sylancl | ⊢ ( 𝜑 → ( 𝐹 : 𝑆 –1-1→ 𝑇 ↔ 𝐹 : 𝑆 –1-1-onto→ 𝑇 ) ) |
| 110 | 83 109 | mpbid | ⊢ ( 𝜑 → 𝐹 : 𝑆 –1-1-onto→ 𝑇 ) |