This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| ringpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| ringpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| ringpropd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | crngpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ CRing ↔ 𝐿 ∈ CRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | ringpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | ringpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | ringpropd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) | |
| 5 | 1 2 3 4 | ringpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Ring ↔ 𝐿 ∈ Ring ) ) |
| 6 | eqid | ⊢ ( mulGrp ‘ 𝐾 ) = ( mulGrp ‘ 𝐾 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 8 | 6 7 | mgpbas | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) |
| 9 | 1 8 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝐾 ) ) ) |
| 10 | eqid | ⊢ ( mulGrp ‘ 𝐿 ) = ( mulGrp ‘ 𝐿 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 12 | 10 11 | mgpbas | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ ( mulGrp ‘ 𝐿 ) ) |
| 13 | 2 12 | eqtrdi | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝐿 ) ) ) |
| 14 | eqid | ⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) | |
| 15 | 6 14 | mgpplusg | ⊢ ( .r ‘ 𝐾 ) = ( +g ‘ ( mulGrp ‘ 𝐾 ) ) |
| 16 | 15 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) |
| 17 | eqid | ⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) | |
| 18 | 10 17 | mgpplusg | ⊢ ( .r ‘ 𝐿 ) = ( +g ‘ ( mulGrp ‘ 𝐿 ) ) |
| 19 | 18 | oveqi | ⊢ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐿 ) ) 𝑦 ) |
| 20 | 4 16 19 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐾 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐿 ) ) 𝑦 ) ) |
| 21 | 9 13 20 | cmnpropd | ⊢ ( 𝜑 → ( ( mulGrp ‘ 𝐾 ) ∈ CMnd ↔ ( mulGrp ‘ 𝐿 ) ∈ CMnd ) ) |
| 22 | 5 21 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐾 ∈ Ring ∧ ( mulGrp ‘ 𝐾 ) ∈ CMnd ) ↔ ( 𝐿 ∈ Ring ∧ ( mulGrp ‘ 𝐿 ) ∈ CMnd ) ) ) |
| 23 | 6 | iscrng | ⊢ ( 𝐾 ∈ CRing ↔ ( 𝐾 ∈ Ring ∧ ( mulGrp ‘ 𝐾 ) ∈ CMnd ) ) |
| 24 | 10 | iscrng | ⊢ ( 𝐿 ∈ CRing ↔ ( 𝐿 ∈ Ring ∧ ( mulGrp ‘ 𝐿 ) ∈ CMnd ) ) |
| 25 | 22 23 24 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐾 ∈ CRing ↔ 𝐿 ∈ CRing ) ) |