This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringpropd.1 | ||
| ringpropd.2 | |||
| ringpropd.3 | |||
| ringpropd.4 | |||
| Assertion | crngpropd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringpropd.1 | ||
| 2 | ringpropd.2 | ||
| 3 | ringpropd.3 | ||
| 4 | ringpropd.4 | ||
| 5 | 1 2 3 4 | ringpropd | |
| 6 | eqid | ||
| 7 | eqid | ||
| 8 | 6 7 | mgpbas | |
| 9 | 1 8 | eqtrdi | |
| 10 | eqid | ||
| 11 | eqid | ||
| 12 | 10 11 | mgpbas | |
| 13 | 2 12 | eqtrdi | |
| 14 | eqid | ||
| 15 | 6 14 | mgpplusg | |
| 16 | 15 | oveqi | |
| 17 | eqid | ||
| 18 | 10 17 | mgpplusg | |
| 19 | 18 | oveqi | |
| 20 | 4 16 19 | 3eqtr3g | |
| 21 | 9 13 20 | cmnpropd | |
| 22 | 5 21 | anbi12d | |
| 23 | 6 | iscrng | |
| 24 | 10 | iscrng | |
| 25 | 22 23 24 | 3bitr4g |