This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| ringpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| ringpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| ringpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
||
| Assertion | crngpropd | |- ( ph -> ( K e. CRing <-> L e. CRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | ringpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | ringpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | ringpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
|
| 5 | 1 2 3 4 | ringpropd | |- ( ph -> ( K e. Ring <-> L e. Ring ) ) |
| 6 | eqid | |- ( mulGrp ` K ) = ( mulGrp ` K ) |
|
| 7 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 8 | 6 7 | mgpbas | |- ( Base ` K ) = ( Base ` ( mulGrp ` K ) ) |
| 9 | 1 8 | eqtrdi | |- ( ph -> B = ( Base ` ( mulGrp ` K ) ) ) |
| 10 | eqid | |- ( mulGrp ` L ) = ( mulGrp ` L ) |
|
| 11 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 12 | 10 11 | mgpbas | |- ( Base ` L ) = ( Base ` ( mulGrp ` L ) ) |
| 13 | 2 12 | eqtrdi | |- ( ph -> B = ( Base ` ( mulGrp ` L ) ) ) |
| 14 | eqid | |- ( .r ` K ) = ( .r ` K ) |
|
| 15 | 6 14 | mgpplusg | |- ( .r ` K ) = ( +g ` ( mulGrp ` K ) ) |
| 16 | 15 | oveqi | |- ( x ( .r ` K ) y ) = ( x ( +g ` ( mulGrp ` K ) ) y ) |
| 17 | eqid | |- ( .r ` L ) = ( .r ` L ) |
|
| 18 | 10 17 | mgpplusg | |- ( .r ` L ) = ( +g ` ( mulGrp ` L ) ) |
| 19 | 18 | oveqi | |- ( x ( .r ` L ) y ) = ( x ( +g ` ( mulGrp ` L ) ) y ) |
| 20 | 4 16 19 | 3eqtr3g | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` ( mulGrp ` K ) ) y ) = ( x ( +g ` ( mulGrp ` L ) ) y ) ) |
| 21 | 9 13 20 | cmnpropd | |- ( ph -> ( ( mulGrp ` K ) e. CMnd <-> ( mulGrp ` L ) e. CMnd ) ) |
| 22 | 5 21 | anbi12d | |- ( ph -> ( ( K e. Ring /\ ( mulGrp ` K ) e. CMnd ) <-> ( L e. Ring /\ ( mulGrp ` L ) e. CMnd ) ) ) |
| 23 | 6 | iscrng | |- ( K e. CRing <-> ( K e. Ring /\ ( mulGrp ` K ) e. CMnd ) ) |
| 24 | 10 | iscrng | |- ( L e. CRing <-> ( L e. Ring /\ ( mulGrp ` L ) e. CMnd ) ) |
| 25 | 22 23 24 | 3bitr4g | |- ( ph -> ( K e. CRing <-> L e. CRing ) ) |