This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), one is a commutative monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| ablpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| ablpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | cmnpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | ablpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | ablpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | 1 2 3 | mndpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd ) ) |
| 5 | 3 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑢 ( +g ‘ 𝐾 ) 𝑣 ) = ( 𝑢 ( +g ‘ 𝐿 ) 𝑣 ) ) |
| 6 | 3 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) → ( 𝑣 ( +g ‘ 𝐾 ) 𝑢 ) = ( 𝑣 ( +g ‘ 𝐿 ) 𝑢 ) ) |
| 7 | 6 | ancom2s | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( 𝑣 ( +g ‘ 𝐾 ) 𝑢 ) = ( 𝑣 ( +g ‘ 𝐿 ) 𝑢 ) ) |
| 8 | 5 7 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ( ( 𝑢 ( +g ‘ 𝐾 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐾 ) 𝑢 ) ↔ ( 𝑢 ( +g ‘ 𝐿 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐿 ) 𝑢 ) ) ) |
| 9 | 8 | 2ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ( +g ‘ 𝐾 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐾 ) 𝑢 ) ↔ ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ( +g ‘ 𝐿 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐿 ) 𝑢 ) ) ) |
| 10 | 1 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑣 ∈ 𝐵 ( 𝑢 ( +g ‘ 𝐾 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐾 ) 𝑢 ) ↔ ∀ 𝑣 ∈ ( Base ‘ 𝐾 ) ( 𝑢 ( +g ‘ 𝐾 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐾 ) 𝑢 ) ) ) |
| 11 | 1 10 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ( +g ‘ 𝐾 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐾 ) 𝑢 ) ↔ ∀ 𝑢 ∈ ( Base ‘ 𝐾 ) ∀ 𝑣 ∈ ( Base ‘ 𝐾 ) ( 𝑢 ( +g ‘ 𝐾 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐾 ) 𝑢 ) ) ) |
| 12 | 2 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑣 ∈ 𝐵 ( 𝑢 ( +g ‘ 𝐿 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐿 ) 𝑢 ) ↔ ∀ 𝑣 ∈ ( Base ‘ 𝐿 ) ( 𝑢 ( +g ‘ 𝐿 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐿 ) 𝑢 ) ) ) |
| 13 | 2 12 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐵 ∀ 𝑣 ∈ 𝐵 ( 𝑢 ( +g ‘ 𝐿 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐿 ) 𝑢 ) ↔ ∀ 𝑢 ∈ ( Base ‘ 𝐿 ) ∀ 𝑣 ∈ ( Base ‘ 𝐿 ) ( 𝑢 ( +g ‘ 𝐿 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐿 ) 𝑢 ) ) ) |
| 14 | 9 11 13 | 3bitr3d | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ ( Base ‘ 𝐾 ) ∀ 𝑣 ∈ ( Base ‘ 𝐾 ) ( 𝑢 ( +g ‘ 𝐾 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐾 ) 𝑢 ) ↔ ∀ 𝑢 ∈ ( Base ‘ 𝐿 ) ∀ 𝑣 ∈ ( Base ‘ 𝐿 ) ( 𝑢 ( +g ‘ 𝐿 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐿 ) 𝑢 ) ) ) |
| 15 | 4 14 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐾 ∈ Mnd ∧ ∀ 𝑢 ∈ ( Base ‘ 𝐾 ) ∀ 𝑣 ∈ ( Base ‘ 𝐾 ) ( 𝑢 ( +g ‘ 𝐾 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐾 ) 𝑢 ) ) ↔ ( 𝐿 ∈ Mnd ∧ ∀ 𝑢 ∈ ( Base ‘ 𝐿 ) ∀ 𝑣 ∈ ( Base ‘ 𝐿 ) ( 𝑢 ( +g ‘ 𝐿 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐿 ) 𝑢 ) ) ) ) |
| 16 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 17 | eqid | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐾 ) | |
| 18 | 16 17 | iscmn | ⊢ ( 𝐾 ∈ CMnd ↔ ( 𝐾 ∈ Mnd ∧ ∀ 𝑢 ∈ ( Base ‘ 𝐾 ) ∀ 𝑣 ∈ ( Base ‘ 𝐾 ) ( 𝑢 ( +g ‘ 𝐾 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐾 ) 𝑢 ) ) ) |
| 19 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 20 | eqid | ⊢ ( +g ‘ 𝐿 ) = ( +g ‘ 𝐿 ) | |
| 21 | 19 20 | iscmn | ⊢ ( 𝐿 ∈ CMnd ↔ ( 𝐿 ∈ Mnd ∧ ∀ 𝑢 ∈ ( Base ‘ 𝐿 ) ∀ 𝑣 ∈ ( Base ‘ 𝐿 ) ( 𝑢 ( +g ‘ 𝐿 ) 𝑣 ) = ( 𝑣 ( +g ‘ 𝐿 ) 𝑢 ) ) ) |
| 22 | 15 18 21 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd ) ) |