This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for crctcsh . (Contributed by AV, 10-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | ||
| crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| crctcsh.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) | ||
| crctcsh.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | ||
| crctcsh.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | ||
| Assertion | crctcshlem4 | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcsh.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | crctcsh.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | crctcsh.d | ⊢ ( 𝜑 → 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 ) | |
| 4 | crctcsh.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 5 | crctcsh.s | ⊢ ( 𝜑 → 𝑆 ∈ ( 0 ..^ 𝑁 ) ) | |
| 6 | crctcsh.h | ⊢ 𝐻 = ( 𝐹 cyclShift 𝑆 ) | |
| 7 | crctcsh.q | ⊢ 𝑄 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) | |
| 8 | oveq2 | ⊢ ( 𝑆 = 0 → ( 𝐹 cyclShift 𝑆 ) = ( 𝐹 cyclShift 0 ) ) | |
| 9 | crctiswlk | ⊢ ( 𝐹 ( Circuits ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 10 | 2 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 11 | cshw0 | ⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 𝐹 cyclShift 0 ) = 𝐹 ) | |
| 12 | 3 9 10 11 | 4syl | ⊢ ( 𝜑 → ( 𝐹 cyclShift 0 ) = 𝐹 ) |
| 13 | 8 12 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝐹 cyclShift 𝑆 ) = 𝐹 ) |
| 14 | 6 13 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → 𝐻 = 𝐹 ) |
| 15 | oveq2 | ⊢ ( 𝑆 = 0 → ( 𝑁 − 𝑆 ) = ( 𝑁 − 0 ) ) | |
| 16 | 1 2 3 4 | crctcshlem1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 17 | 16 | nn0cnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 18 | 17 | subid1d | ⊢ ( 𝜑 → ( 𝑁 − 0 ) = 𝑁 ) |
| 19 | 15 18 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑁 − 𝑆 ) = 𝑁 ) |
| 20 | 19 | breq2d | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑥 ≤ ( 𝑁 − 𝑆 ) ↔ 𝑥 ≤ 𝑁 ) ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑆 = 0 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 ≤ ( 𝑁 − 𝑆 ) ↔ 𝑥 ≤ 𝑁 ) ) |
| 22 | oveq2 | ⊢ ( 𝑆 = 0 → ( 𝑥 + 𝑆 ) = ( 𝑥 + 0 ) ) | |
| 23 | 22 | adantl | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑥 + 𝑆 ) = ( 𝑥 + 0 ) ) |
| 24 | elfzelz | ⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑥 ∈ ℤ ) | |
| 25 | 24 | zcnd | ⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑥 ∈ ℂ ) |
| 26 | 25 | addridd | ⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 27 | 23 26 | sylan9eq | ⊢ ( ( ( 𝜑 ∧ 𝑆 = 0 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑥 + 𝑆 ) = 𝑥 ) |
| 28 | 27 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑆 = 0 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) = ( 𝑃 ‘ 𝑥 ) ) |
| 29 | 27 | fvoveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑆 = 0 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) = ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) |
| 30 | 21 28 29 | ifbieq12d | ⊢ ( ( ( 𝜑 ∧ 𝑆 = 0 ) ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) = if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) ) |
| 31 | 30 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) ) ) |
| 32 | elfzle2 | ⊢ ( 𝑥 ∈ ( 0 ... 𝑁 ) → 𝑥 ≤ 𝑁 ) | |
| 33 | 32 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → 𝑥 ≤ 𝑁 ) |
| 34 | 33 | iftrued | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 ... 𝑁 ) ) → if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) = ( 𝑃 ‘ 𝑥 ) ) |
| 35 | 34 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) ) = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ‘ 𝑥 ) ) ) |
| 36 | 1 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 37 | 3 9 36 | 3syl | ⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 38 | ffn | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 39 | 4 | eqcomi | ⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
| 40 | 39 | oveq2i | ⊢ ( 0 ... ( ♯ ‘ 𝐹 ) ) = ( 0 ... 𝑁 ) |
| 41 | 40 | fneq2i | ⊢ ( 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ↔ 𝑃 Fn ( 0 ... 𝑁 ) ) |
| 42 | 38 41 | sylib | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → 𝑃 Fn ( 0 ... 𝑁 ) ) |
| 43 | 42 | adantl | ⊢ ( ( 𝜑 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → 𝑃 Fn ( 0 ... 𝑁 ) ) |
| 44 | dffn5 | ⊢ ( 𝑃 Fn ( 0 ... 𝑁 ) ↔ 𝑃 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ‘ 𝑥 ) ) ) | |
| 45 | 43 44 | sylib | ⊢ ( ( 𝜑 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → 𝑃 = ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ‘ 𝑥 ) ) ) |
| 46 | 45 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ‘ 𝑥 ) ) = 𝑃 ) |
| 47 | 37 46 | mpdan | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ ( 𝑃 ‘ 𝑥 ) ) = 𝑃 ) |
| 48 | 35 47 | eqtrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) ) = 𝑃 ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ 𝑁 , ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 − 𝑁 ) ) ) ) = 𝑃 ) |
| 50 | 31 49 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝑥 ∈ ( 0 ... 𝑁 ) ↦ if ( 𝑥 ≤ ( 𝑁 − 𝑆 ) , ( 𝑃 ‘ ( 𝑥 + 𝑆 ) ) , ( 𝑃 ‘ ( ( 𝑥 + 𝑆 ) − 𝑁 ) ) ) ) = 𝑃 ) |
| 51 | 7 50 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → 𝑄 = 𝑃 ) |
| 52 | 14 51 | jca | ⊢ ( ( 𝜑 ∧ 𝑆 = 0 ) → ( 𝐻 = 𝐹 ∧ 𝑄 = 𝑃 ) ) |