This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting the indices of a circuit <. F , P >. results in a circuit <. H , Q >. . (Contributed by AV, 10-Mar-2021) (Proof shortened by AV, 31-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crctcsh.v | |- V = ( Vtx ` G ) |
|
| crctcsh.i | |- I = ( iEdg ` G ) |
||
| crctcsh.d | |- ( ph -> F ( Circuits ` G ) P ) |
||
| crctcsh.n | |- N = ( # ` F ) |
||
| crctcsh.s | |- ( ph -> S e. ( 0 ..^ N ) ) |
||
| crctcsh.h | |- H = ( F cyclShift S ) |
||
| crctcsh.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
||
| Assertion | crctcsh | |- ( ph -> H ( Circuits ` G ) Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crctcsh.v | |- V = ( Vtx ` G ) |
|
| 2 | crctcsh.i | |- I = ( iEdg ` G ) |
|
| 3 | crctcsh.d | |- ( ph -> F ( Circuits ` G ) P ) |
|
| 4 | crctcsh.n | |- N = ( # ` F ) |
|
| 5 | crctcsh.s | |- ( ph -> S e. ( 0 ..^ N ) ) |
|
| 6 | crctcsh.h | |- H = ( F cyclShift S ) |
|
| 7 | crctcsh.q | |- Q = ( x e. ( 0 ... N ) |-> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) ) |
|
| 8 | 1 2 3 4 5 6 7 | crctcshlem4 | |- ( ( ph /\ S = 0 ) -> ( H = F /\ Q = P ) ) |
| 9 | breq12 | |- ( ( H = F /\ Q = P ) -> ( H ( Circuits ` G ) Q <-> F ( Circuits ` G ) P ) ) |
|
| 10 | 3 9 | syl5ibrcom | |- ( ph -> ( ( H = F /\ Q = P ) -> H ( Circuits ` G ) Q ) ) |
| 11 | 10 | adantr | |- ( ( ph /\ S = 0 ) -> ( ( H = F /\ Q = P ) -> H ( Circuits ` G ) Q ) ) |
| 12 | 8 11 | mpd | |- ( ( ph /\ S = 0 ) -> H ( Circuits ` G ) Q ) |
| 13 | 1 2 3 4 5 6 7 | crctcshtrl | |- ( ph -> H ( Trails ` G ) Q ) |
| 14 | 13 | adantr | |- ( ( ph /\ S =/= 0 ) -> H ( Trails ` G ) Q ) |
| 15 | breq1 | |- ( x = 0 -> ( x <_ ( N - S ) <-> 0 <_ ( N - S ) ) ) |
|
| 16 | oveq1 | |- ( x = 0 -> ( x + S ) = ( 0 + S ) ) |
|
| 17 | 16 | fveq2d | |- ( x = 0 -> ( P ` ( x + S ) ) = ( P ` ( 0 + S ) ) ) |
| 18 | 16 | fvoveq1d | |- ( x = 0 -> ( P ` ( ( x + S ) - N ) ) = ( P ` ( ( 0 + S ) - N ) ) ) |
| 19 | 15 17 18 | ifbieq12d | |- ( x = 0 -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) = if ( 0 <_ ( N - S ) , ( P ` ( 0 + S ) ) , ( P ` ( ( 0 + S ) - N ) ) ) ) |
| 20 | elfzo0le | |- ( S e. ( 0 ..^ N ) -> S <_ N ) |
|
| 21 | 5 20 | syl | |- ( ph -> S <_ N ) |
| 22 | 1 2 3 4 | crctcshlem1 | |- ( ph -> N e. NN0 ) |
| 23 | 22 | nn0red | |- ( ph -> N e. RR ) |
| 24 | elfzoelz | |- ( S e. ( 0 ..^ N ) -> S e. ZZ ) |
|
| 25 | 5 24 | syl | |- ( ph -> S e. ZZ ) |
| 26 | 25 | zred | |- ( ph -> S e. RR ) |
| 27 | 23 26 | subge0d | |- ( ph -> ( 0 <_ ( N - S ) <-> S <_ N ) ) |
| 28 | 21 27 | mpbird | |- ( ph -> 0 <_ ( N - S ) ) |
| 29 | 28 | adantr | |- ( ( ph /\ S =/= 0 ) -> 0 <_ ( N - S ) ) |
| 30 | 29 | iftrued | |- ( ( ph /\ S =/= 0 ) -> if ( 0 <_ ( N - S ) , ( P ` ( 0 + S ) ) , ( P ` ( ( 0 + S ) - N ) ) ) = ( P ` ( 0 + S ) ) ) |
| 31 | 19 30 | sylan9eqr | |- ( ( ( ph /\ S =/= 0 ) /\ x = 0 ) -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) = ( P ` ( 0 + S ) ) ) |
| 32 | 3 | adantr | |- ( ( ph /\ S =/= 0 ) -> F ( Circuits ` G ) P ) |
| 33 | 1 2 32 4 | crctcshlem1 | |- ( ( ph /\ S =/= 0 ) -> N e. NN0 ) |
| 34 | 0elfz | |- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
|
| 35 | 33 34 | syl | |- ( ( ph /\ S =/= 0 ) -> 0 e. ( 0 ... N ) ) |
| 36 | fvexd | |- ( ( ph /\ S =/= 0 ) -> ( P ` ( 0 + S ) ) e. _V ) |
|
| 37 | 7 31 35 36 | fvmptd2 | |- ( ( ph /\ S =/= 0 ) -> ( Q ` 0 ) = ( P ` ( 0 + S ) ) ) |
| 38 | breq1 | |- ( x = ( # ` H ) -> ( x <_ ( N - S ) <-> ( # ` H ) <_ ( N - S ) ) ) |
|
| 39 | oveq1 | |- ( x = ( # ` H ) -> ( x + S ) = ( ( # ` H ) + S ) ) |
|
| 40 | 39 | fveq2d | |- ( x = ( # ` H ) -> ( P ` ( x + S ) ) = ( P ` ( ( # ` H ) + S ) ) ) |
| 41 | 39 | fvoveq1d | |- ( x = ( # ` H ) -> ( P ` ( ( x + S ) - N ) ) = ( P ` ( ( ( # ` H ) + S ) - N ) ) ) |
| 42 | 38 40 41 | ifbieq12d | |- ( x = ( # ` H ) -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) = if ( ( # ` H ) <_ ( N - S ) , ( P ` ( ( # ` H ) + S ) ) , ( P ` ( ( ( # ` H ) + S ) - N ) ) ) ) |
| 43 | elfzoel2 | |- ( S e. ( 0 ..^ N ) -> N e. ZZ ) |
|
| 44 | elfzonn0 | |- ( S e. ( 0 ..^ N ) -> S e. NN0 ) |
|
| 45 | simpr | |- ( ( N e. ZZ /\ S e. NN0 ) -> S e. NN0 ) |
|
| 46 | 45 | anim1i | |- ( ( ( N e. ZZ /\ S e. NN0 ) /\ S =/= 0 ) -> ( S e. NN0 /\ S =/= 0 ) ) |
| 47 | elnnne0 | |- ( S e. NN <-> ( S e. NN0 /\ S =/= 0 ) ) |
|
| 48 | 46 47 | sylibr | |- ( ( ( N e. ZZ /\ S e. NN0 ) /\ S =/= 0 ) -> S e. NN ) |
| 49 | 48 | nngt0d | |- ( ( ( N e. ZZ /\ S e. NN0 ) /\ S =/= 0 ) -> 0 < S ) |
| 50 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 51 | nn0re | |- ( S e. NN0 -> S e. RR ) |
|
| 52 | 50 51 | anim12ci | |- ( ( N e. ZZ /\ S e. NN0 ) -> ( S e. RR /\ N e. RR ) ) |
| 53 | 52 | adantr | |- ( ( ( N e. ZZ /\ S e. NN0 ) /\ S =/= 0 ) -> ( S e. RR /\ N e. RR ) ) |
| 54 | ltsubpos | |- ( ( S e. RR /\ N e. RR ) -> ( 0 < S <-> ( N - S ) < N ) ) |
|
| 55 | 54 | bicomd | |- ( ( S e. RR /\ N e. RR ) -> ( ( N - S ) < N <-> 0 < S ) ) |
| 56 | 53 55 | syl | |- ( ( ( N e. ZZ /\ S e. NN0 ) /\ S =/= 0 ) -> ( ( N - S ) < N <-> 0 < S ) ) |
| 57 | 49 56 | mpbird | |- ( ( ( N e. ZZ /\ S e. NN0 ) /\ S =/= 0 ) -> ( N - S ) < N ) |
| 58 | 57 | ex | |- ( ( N e. ZZ /\ S e. NN0 ) -> ( S =/= 0 -> ( N - S ) < N ) ) |
| 59 | 43 44 58 | syl2anc | |- ( S e. ( 0 ..^ N ) -> ( S =/= 0 -> ( N - S ) < N ) ) |
| 60 | 5 59 | syl | |- ( ph -> ( S =/= 0 -> ( N - S ) < N ) ) |
| 61 | 60 | imp | |- ( ( ph /\ S =/= 0 ) -> ( N - S ) < N ) |
| 62 | 5 | adantr | |- ( ( ph /\ S =/= 0 ) -> S e. ( 0 ..^ N ) ) |
| 63 | 1 2 32 4 62 6 | crctcshlem2 | |- ( ( ph /\ S =/= 0 ) -> ( # ` H ) = N ) |
| 64 | 63 | breq1d | |- ( ( ph /\ S =/= 0 ) -> ( ( # ` H ) <_ ( N - S ) <-> N <_ ( N - S ) ) ) |
| 65 | 64 | notbid | |- ( ( ph /\ S =/= 0 ) -> ( -. ( # ` H ) <_ ( N - S ) <-> -. N <_ ( N - S ) ) ) |
| 66 | 23 26 | resubcld | |- ( ph -> ( N - S ) e. RR ) |
| 67 | 66 23 | jca | |- ( ph -> ( ( N - S ) e. RR /\ N e. RR ) ) |
| 68 | 67 | adantr | |- ( ( ph /\ S =/= 0 ) -> ( ( N - S ) e. RR /\ N e. RR ) ) |
| 69 | ltnle | |- ( ( ( N - S ) e. RR /\ N e. RR ) -> ( ( N - S ) < N <-> -. N <_ ( N - S ) ) ) |
|
| 70 | 68 69 | syl | |- ( ( ph /\ S =/= 0 ) -> ( ( N - S ) < N <-> -. N <_ ( N - S ) ) ) |
| 71 | 65 70 | bitr4d | |- ( ( ph /\ S =/= 0 ) -> ( -. ( # ` H ) <_ ( N - S ) <-> ( N - S ) < N ) ) |
| 72 | 61 71 | mpbird | |- ( ( ph /\ S =/= 0 ) -> -. ( # ` H ) <_ ( N - S ) ) |
| 73 | 72 | iffalsed | |- ( ( ph /\ S =/= 0 ) -> if ( ( # ` H ) <_ ( N - S ) , ( P ` ( ( # ` H ) + S ) ) , ( P ` ( ( ( # ` H ) + S ) - N ) ) ) = ( P ` ( ( ( # ` H ) + S ) - N ) ) ) |
| 74 | 42 73 | sylan9eqr | |- ( ( ( ph /\ S =/= 0 ) /\ x = ( # ` H ) ) -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) = ( P ` ( ( ( # ` H ) + S ) - N ) ) ) |
| 75 | 1 2 3 4 5 6 | crctcshlem2 | |- ( ph -> ( # ` H ) = N ) |
| 76 | 75 22 | eqeltrd | |- ( ph -> ( # ` H ) e. NN0 ) |
| 77 | 76 | nn0cnd | |- ( ph -> ( # ` H ) e. CC ) |
| 78 | 25 | zcnd | |- ( ph -> S e. CC ) |
| 79 | 22 | nn0cnd | |- ( ph -> N e. CC ) |
| 80 | 77 78 79 | addsubd | |- ( ph -> ( ( ( # ` H ) + S ) - N ) = ( ( ( # ` H ) - N ) + S ) ) |
| 81 | 75 | oveq1d | |- ( ph -> ( ( # ` H ) - N ) = ( N - N ) ) |
| 82 | 79 | subidd | |- ( ph -> ( N - N ) = 0 ) |
| 83 | 81 82 | eqtrd | |- ( ph -> ( ( # ` H ) - N ) = 0 ) |
| 84 | 83 | oveq1d | |- ( ph -> ( ( ( # ` H ) - N ) + S ) = ( 0 + S ) ) |
| 85 | 80 84 | eqtrd | |- ( ph -> ( ( ( # ` H ) + S ) - N ) = ( 0 + S ) ) |
| 86 | 85 | fveq2d | |- ( ph -> ( P ` ( ( ( # ` H ) + S ) - N ) ) = ( P ` ( 0 + S ) ) ) |
| 87 | 86 | adantr | |- ( ( ph /\ S =/= 0 ) -> ( P ` ( ( ( # ` H ) + S ) - N ) ) = ( P ` ( 0 + S ) ) ) |
| 88 | 87 | adantr | |- ( ( ( ph /\ S =/= 0 ) /\ x = ( # ` H ) ) -> ( P ` ( ( ( # ` H ) + S ) - N ) ) = ( P ` ( 0 + S ) ) ) |
| 89 | 74 88 | eqtrd | |- ( ( ( ph /\ S =/= 0 ) /\ x = ( # ` H ) ) -> if ( x <_ ( N - S ) , ( P ` ( x + S ) ) , ( P ` ( ( x + S ) - N ) ) ) = ( P ` ( 0 + S ) ) ) |
| 90 | 75 | adantr | |- ( ( ph /\ S =/= 0 ) -> ( # ` H ) = N ) |
| 91 | nn0fz0 | |- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
|
| 92 | 22 91 | sylib | |- ( ph -> N e. ( 0 ... N ) ) |
| 93 | 92 | adantr | |- ( ( ph /\ S =/= 0 ) -> N e. ( 0 ... N ) ) |
| 94 | 90 93 | eqeltrd | |- ( ( ph /\ S =/= 0 ) -> ( # ` H ) e. ( 0 ... N ) ) |
| 95 | 7 89 94 36 | fvmptd2 | |- ( ( ph /\ S =/= 0 ) -> ( Q ` ( # ` H ) ) = ( P ` ( 0 + S ) ) ) |
| 96 | 37 95 | eqtr4d | |- ( ( ph /\ S =/= 0 ) -> ( Q ` 0 ) = ( Q ` ( # ` H ) ) ) |
| 97 | iscrct | |- ( H ( Circuits ` G ) Q <-> ( H ( Trails ` G ) Q /\ ( Q ` 0 ) = ( Q ` ( # ` H ) ) ) ) |
|
| 98 | 14 96 97 | sylanbrc | |- ( ( ph /\ S =/= 0 ) -> H ( Circuits ` G ) Q ) |
| 99 | 12 98 | pm2.61dane | |- ( ph -> H ( Circuits ` G ) Q ) |