This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm of a scalar product. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphnmvs.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| cphnmvs.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| cphnmvs.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| cphnmvs.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| cphnmvs.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | cphnmvs | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( abs ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphnmvs.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | cphnmvs.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 3 | cphnmvs.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | cphnmvs.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 5 | cphnmvs.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | cphnlm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod ) | |
| 7 | eqid | ⊢ ( norm ‘ 𝐹 ) = ( norm ‘ 𝐹 ) | |
| 8 | 1 2 3 4 5 7 | nmvs | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| 9 | 6 8 | syl3an1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| 10 | cphclm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) | |
| 11 | 4 5 | clmabs | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝐾 ) → ( abs ‘ 𝑋 ) = ( ( norm ‘ 𝐹 ) ‘ 𝑋 ) ) |
| 12 | 10 11 | sylan | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ) → ( abs ‘ 𝑋 ) = ( ( norm ‘ 𝐹 ) ‘ 𝑋 ) ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( abs ‘ 𝑋 ) = ( ( norm ‘ 𝐹 ) ‘ 𝑋 ) ) |
| 14 | 13 | oveq1d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( ( abs ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| 15 | 9 14 | eqtr4d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( abs ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |