This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm of a scalar product. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphnmvs.v | |- V = ( Base ` W ) |
|
| cphnmvs.n | |- N = ( norm ` W ) |
||
| cphnmvs.s | |- .x. = ( .s ` W ) |
||
| cphnmvs.f | |- F = ( Scalar ` W ) |
||
| cphnmvs.k | |- K = ( Base ` F ) |
||
| Assertion | cphnmvs | |- ( ( W e. CPreHil /\ X e. K /\ Y e. V ) -> ( N ` ( X .x. Y ) ) = ( ( abs ` X ) x. ( N ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphnmvs.v | |- V = ( Base ` W ) |
|
| 2 | cphnmvs.n | |- N = ( norm ` W ) |
|
| 3 | cphnmvs.s | |- .x. = ( .s ` W ) |
|
| 4 | cphnmvs.f | |- F = ( Scalar ` W ) |
|
| 5 | cphnmvs.k | |- K = ( Base ` F ) |
|
| 6 | cphnlm | |- ( W e. CPreHil -> W e. NrmMod ) |
|
| 7 | eqid | |- ( norm ` F ) = ( norm ` F ) |
|
| 8 | 1 2 3 4 5 7 | nmvs | |- ( ( W e. NrmMod /\ X e. K /\ Y e. V ) -> ( N ` ( X .x. Y ) ) = ( ( ( norm ` F ) ` X ) x. ( N ` Y ) ) ) |
| 9 | 6 8 | syl3an1 | |- ( ( W e. CPreHil /\ X e. K /\ Y e. V ) -> ( N ` ( X .x. Y ) ) = ( ( ( norm ` F ) ` X ) x. ( N ` Y ) ) ) |
| 10 | cphclm | |- ( W e. CPreHil -> W e. CMod ) |
|
| 11 | 4 5 | clmabs | |- ( ( W e. CMod /\ X e. K ) -> ( abs ` X ) = ( ( norm ` F ) ` X ) ) |
| 12 | 10 11 | sylan | |- ( ( W e. CPreHil /\ X e. K ) -> ( abs ` X ) = ( ( norm ` F ) ` X ) ) |
| 13 | 12 | 3adant3 | |- ( ( W e. CPreHil /\ X e. K /\ Y e. V ) -> ( abs ` X ) = ( ( norm ` F ) ` X ) ) |
| 14 | 13 | oveq1d | |- ( ( W e. CPreHil /\ X e. K /\ Y e. V ) -> ( ( abs ` X ) x. ( N ` Y ) ) = ( ( ( norm ` F ) ` X ) x. ( N ` Y ) ) ) |
| 15 | 9 14 | eqtr4d | |- ( ( W e. CPreHil /\ X e. K /\ Y e. V ) -> ( N ` ( X .x. Y ) ) = ( ( abs ` X ) x. ( N ` Y ) ) ) |