This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmsq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| nmsq.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| nmsq.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| cphnmcl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| cphnmcl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | cphnmf | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 : 𝑉 ⟶ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmsq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | nmsq.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | nmsq.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 4 | cphnmcl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 5 | cphnmcl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | 1 2 3 | cphnmfval | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
| 7 | simpl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → 𝑊 ∈ ℂPreHil ) | |
| 8 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → 𝑊 ∈ PreHil ) |
| 10 | simpr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) | |
| 11 | 4 2 1 5 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 , 𝑥 ) ∈ 𝐾 ) |
| 12 | 9 10 10 11 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 , 𝑥 ) ∈ 𝐾 ) |
| 13 | 1 2 3 | nmsq | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) = ( 𝑥 , 𝑥 ) ) |
| 14 | cphngp | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) | |
| 15 | 1 3 | nmcl | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑥 ) ∈ ℝ ) |
| 16 | 14 15 | sylan | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑥 ) ∈ ℝ ) |
| 17 | 16 | resqcld | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) ∈ ℝ ) |
| 18 | 13 17 | eqeltrrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 , 𝑥 ) ∈ ℝ ) |
| 19 | 16 | sqge0d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) ) |
| 20 | 19 13 | breqtrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
| 21 | 4 5 | cphsqrtcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( ( 𝑥 , 𝑥 ) ∈ 𝐾 ∧ ( 𝑥 , 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝑥 , 𝑥 ) ) ) → ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ 𝐾 ) |
| 22 | 7 12 18 20 21 | syl13anc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ 𝐾 ) |
| 23 | 6 22 | fmpt3d | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 : 𝑉 ⟶ 𝐾 ) |