This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmsq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| nmsq.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| nmsq.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| cphnmcl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| cphnmcl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | cphnmcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmsq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | nmsq.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | nmsq.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 4 | cphnmcl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 5 | cphnmcl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | 1 2 3 4 5 | cphnmf | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 : 𝑉 ⟶ 𝐾 ) |
| 7 | 6 | ffvelcdmda | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝐾 ) |