This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a vector is a member of the scalar field in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 9-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmsq.v | |- V = ( Base ` W ) |
|
| nmsq.h | |- ., = ( .i ` W ) |
||
| nmsq.n | |- N = ( norm ` W ) |
||
| cphnmcl.f | |- F = ( Scalar ` W ) |
||
| cphnmcl.k | |- K = ( Base ` F ) |
||
| Assertion | cphnmf | |- ( W e. CPreHil -> N : V --> K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmsq.v | |- V = ( Base ` W ) |
|
| 2 | nmsq.h | |- ., = ( .i ` W ) |
|
| 3 | nmsq.n | |- N = ( norm ` W ) |
|
| 4 | cphnmcl.f | |- F = ( Scalar ` W ) |
|
| 5 | cphnmcl.k | |- K = ( Base ` F ) |
|
| 6 | 1 2 3 | cphnmfval | |- ( W e. CPreHil -> N = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
| 7 | simpl | |- ( ( W e. CPreHil /\ x e. V ) -> W e. CPreHil ) |
|
| 8 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 9 | 8 | adantr | |- ( ( W e. CPreHil /\ x e. V ) -> W e. PreHil ) |
| 10 | simpr | |- ( ( W e. CPreHil /\ x e. V ) -> x e. V ) |
|
| 11 | 4 2 1 5 | ipcl | |- ( ( W e. PreHil /\ x e. V /\ x e. V ) -> ( x ., x ) e. K ) |
| 12 | 9 10 10 11 | syl3anc | |- ( ( W e. CPreHil /\ x e. V ) -> ( x ., x ) e. K ) |
| 13 | 1 2 3 | nmsq | |- ( ( W e. CPreHil /\ x e. V ) -> ( ( N ` x ) ^ 2 ) = ( x ., x ) ) |
| 14 | cphngp | |- ( W e. CPreHil -> W e. NrmGrp ) |
|
| 15 | 1 3 | nmcl | |- ( ( W e. NrmGrp /\ x e. V ) -> ( N ` x ) e. RR ) |
| 16 | 14 15 | sylan | |- ( ( W e. CPreHil /\ x e. V ) -> ( N ` x ) e. RR ) |
| 17 | 16 | resqcld | |- ( ( W e. CPreHil /\ x e. V ) -> ( ( N ` x ) ^ 2 ) e. RR ) |
| 18 | 13 17 | eqeltrrd | |- ( ( W e. CPreHil /\ x e. V ) -> ( x ., x ) e. RR ) |
| 19 | 16 | sqge0d | |- ( ( W e. CPreHil /\ x e. V ) -> 0 <_ ( ( N ` x ) ^ 2 ) ) |
| 20 | 19 13 | breqtrd | |- ( ( W e. CPreHil /\ x e. V ) -> 0 <_ ( x ., x ) ) |
| 21 | 4 5 | cphsqrtcl | |- ( ( W e. CPreHil /\ ( ( x ., x ) e. K /\ ( x ., x ) e. RR /\ 0 <_ ( x ., x ) ) ) -> ( sqrt ` ( x ., x ) ) e. K ) |
| 22 | 7 12 18 20 21 | syl13anc | |- ( ( W e. CPreHil /\ x e. V ) -> ( sqrt ` ( x ., x ) ) e. K ) |
| 23 | 6 22 | fmpt3d | |- ( W e. CPreHil -> N : V --> K ) |