This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar field of a subcomplex pre-Hilbert space is closed under conjugation. (Contributed by Mario Carneiro, 11-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| cphsca.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | cphcjcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( ∗ ‘ 𝐴 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | cphsca.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | 1 2 | cphsca | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝑊 ∈ ℂPreHil → ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 5 | 2 | fvexi | ⊢ 𝐾 ∈ V |
| 6 | eqid | ⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) | |
| 7 | cnfldcj | ⊢ ∗ = ( *𝑟 ‘ ℂfld ) | |
| 8 | 6 7 | ressstarv | ⊢ ( 𝐾 ∈ V → ∗ = ( *𝑟 ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 9 | 5 8 | ax-mp | ⊢ ∗ = ( *𝑟 ‘ ( ℂfld ↾s 𝐾 ) ) |
| 10 | 4 9 | eqtr4di | ⊢ ( 𝑊 ∈ ℂPreHil → ( *𝑟 ‘ 𝐹 ) = ∗ ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( *𝑟 ‘ 𝐹 ) = ∗ ) |
| 12 | 11 | fveq1d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐴 ) = ( ∗ ‘ 𝐴 ) ) |
| 13 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 14 | 1 | phlsrng | ⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |
| 15 | 13 14 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐹 ∈ *-Ring ) |
| 16 | eqid | ⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) | |
| 17 | 16 2 | srngcl | ⊢ ( ( 𝐹 ∈ *-Ring ∧ 𝐴 ∈ 𝐾 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
| 18 | 15 17 | sylan | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐴 ) ∈ 𝐾 ) |
| 19 | 12 18 | eqeltrrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( ∗ ‘ 𝐴 ) ∈ 𝐾 ) |