This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar field of a subcomplex pre-Hilbert space is closed under conjugation. (Contributed by Mario Carneiro, 11-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsca.f | |- F = ( Scalar ` W ) |
|
| cphsca.k | |- K = ( Base ` F ) |
||
| Assertion | cphcjcl | |- ( ( W e. CPreHil /\ A e. K ) -> ( * ` A ) e. K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsca.f | |- F = ( Scalar ` W ) |
|
| 2 | cphsca.k | |- K = ( Base ` F ) |
|
| 3 | 1 2 | cphsca | |- ( W e. CPreHil -> F = ( CCfld |`s K ) ) |
| 4 | 3 | fveq2d | |- ( W e. CPreHil -> ( *r ` F ) = ( *r ` ( CCfld |`s K ) ) ) |
| 5 | 2 | fvexi | |- K e. _V |
| 6 | eqid | |- ( CCfld |`s K ) = ( CCfld |`s K ) |
|
| 7 | cnfldcj | |- * = ( *r ` CCfld ) |
|
| 8 | 6 7 | ressstarv | |- ( K e. _V -> * = ( *r ` ( CCfld |`s K ) ) ) |
| 9 | 5 8 | ax-mp | |- * = ( *r ` ( CCfld |`s K ) ) |
| 10 | 4 9 | eqtr4di | |- ( W e. CPreHil -> ( *r ` F ) = * ) |
| 11 | 10 | adantr | |- ( ( W e. CPreHil /\ A e. K ) -> ( *r ` F ) = * ) |
| 12 | 11 | fveq1d | |- ( ( W e. CPreHil /\ A e. K ) -> ( ( *r ` F ) ` A ) = ( * ` A ) ) |
| 13 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 14 | 1 | phlsrng | |- ( W e. PreHil -> F e. *Ring ) |
| 15 | 13 14 | syl | |- ( W e. CPreHil -> F e. *Ring ) |
| 16 | eqid | |- ( *r ` F ) = ( *r ` F ) |
|
| 17 | 16 2 | srngcl | |- ( ( F e. *Ring /\ A e. K ) -> ( ( *r ` F ) ` A ) e. K ) |
| 18 | 15 17 | sylan | |- ( ( W e. CPreHil /\ A e. K ) -> ( ( *r ` F ) ` A ) e. K ) |
| 19 | 12 18 | eqeltrrd | |- ( ( W e. CPreHil /\ A e. K ) -> ( * ` A ) e. K ) |