This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr for the main application. (Contributed by NM, 27-Dec-1996) (Proof shortened by Andrew Salmon, 27-Aug-2011) Generalized from its special instance cotr . (Revised by Richard Penner, 24-Dec-2019) (Proof shortened by SN, 19-Dec-2024) Avoid ax-11 . (Revised by BTernaryTau, 29-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cotrg | |- ( ( A o. B ) C_ C <-> A. x A. y A. z ( ( x B y /\ y A z ) -> x C z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco | |- Rel ( A o. B ) |
|
| 2 | ssrel3 | |- ( Rel ( A o. B ) -> ( ( A o. B ) C_ C <-> A. x A. z ( x ( A o. B ) z -> x C z ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( ( A o. B ) C_ C <-> A. x A. z ( x ( A o. B ) z -> x C z ) ) |
| 4 | vex | |- x e. _V |
|
| 5 | vex | |- z e. _V |
|
| 6 | 4 5 | brco | |- ( x ( A o. B ) z <-> E. y ( x B y /\ y A z ) ) |
| 7 | 6 | imbi1i | |- ( ( x ( A o. B ) z -> x C z ) <-> ( E. y ( x B y /\ y A z ) -> x C z ) ) |
| 8 | 19.23v | |- ( A. y ( ( x B y /\ y A z ) -> x C z ) <-> ( E. y ( x B y /\ y A z ) -> x C z ) ) |
|
| 9 | 7 8 | bitr4i | |- ( ( x ( A o. B ) z -> x C z ) <-> A. y ( ( x B y /\ y A z ) -> x C z ) ) |
| 10 | 9 | albii | |- ( A. z ( x ( A o. B ) z -> x C z ) <-> A. z A. y ( ( x B y /\ y A z ) -> x C z ) ) |
| 11 | breq2 | |- ( z = w -> ( y A z <-> y A w ) ) |
|
| 12 | 11 | anbi2d | |- ( z = w -> ( ( x B y /\ y A z ) <-> ( x B y /\ y A w ) ) ) |
| 13 | breq2 | |- ( z = w -> ( x C z <-> x C w ) ) |
|
| 14 | 12 13 | imbi12d | |- ( z = w -> ( ( ( x B y /\ y A z ) -> x C z ) <-> ( ( x B y /\ y A w ) -> x C w ) ) ) |
| 15 | breq2 | |- ( y = w -> ( x B y <-> x B w ) ) |
|
| 16 | breq1 | |- ( y = w -> ( y A z <-> w A z ) ) |
|
| 17 | 15 16 | anbi12d | |- ( y = w -> ( ( x B y /\ y A z ) <-> ( x B w /\ w A z ) ) ) |
| 18 | 17 | imbi1d | |- ( y = w -> ( ( ( x B y /\ y A z ) -> x C z ) <-> ( ( x B w /\ w A z ) -> x C z ) ) ) |
| 19 | 14 18 | alcomw | |- ( A. z A. y ( ( x B y /\ y A z ) -> x C z ) <-> A. y A. z ( ( x B y /\ y A z ) -> x C z ) ) |
| 20 | 10 19 | bitri | |- ( A. z ( x ( A o. B ) z -> x C z ) <-> A. y A. z ( ( x B y /\ y A z ) -> x C z ) ) |
| 21 | 20 | albii | |- ( A. x A. z ( x ( A o. B ) z -> x C z ) <-> A. x A. y A. z ( ( x B y /\ y A z ) -> x C z ) ) |
| 22 | 3 21 | bitri | |- ( ( A o. B ) C_ C <-> A. x A. y A. z ( ( x B y /\ y A z ) -> x C z ) ) |