This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr2 for the main application. (Contributed by RP, 22-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cotr2g.d | ⊢ dom 𝐵 ⊆ 𝐷 | |
| cotr2g.e | ⊢ ( ran 𝐵 ∩ dom 𝐴 ) ⊆ 𝐸 | ||
| cotr2g.f | ⊢ ran 𝐴 ⊆ 𝐹 | ||
| Assertion | cotr2g | ⊢ ( ( 𝐴 ∘ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ∈ 𝐹 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cotr2g.d | ⊢ dom 𝐵 ⊆ 𝐷 | |
| 2 | cotr2g.e | ⊢ ( ran 𝐵 ∩ dom 𝐴 ) ⊆ 𝐸 | |
| 3 | cotr2g.f | ⊢ ran 𝐴 ⊆ 𝐹 | |
| 4 | cotrg | ⊢ ( ( 𝐴 ∘ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) | |
| 5 | nfv | ⊢ Ⅎ 𝑦 𝑥 ∈ 𝐷 | |
| 6 | nfv | ⊢ Ⅎ 𝑧 𝑥 ∈ 𝐷 | |
| 7 | 5 6 | 19.21-2 | ⊢ ( ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐷 → ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ↔ ( 𝑥 ∈ 𝐷 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐷 → ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐷 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ) |
| 9 | simpl | ⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐵 𝑦 ) | |
| 10 | id | ⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) | |
| 11 | simpr | ⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑦 𝐴 𝑧 ) | |
| 12 | 9 10 11 | 3jca | ⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∧ 𝑦 𝐴 𝑧 ) ) |
| 13 | simp2 | ⊢ ( ( 𝑥 𝐵 𝑦 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∧ 𝑦 𝐴 𝑧 ) → ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) | |
| 14 | 12 13 | impbii | ⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ↔ ( 𝑥 𝐵 𝑦 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∧ 𝑦 𝐴 𝑧 ) ) |
| 15 | vex | ⊢ 𝑥 ∈ V | |
| 16 | vex | ⊢ 𝑦 ∈ V | |
| 17 | 15 16 | breldm | ⊢ ( 𝑥 𝐵 𝑦 → 𝑥 ∈ dom 𝐵 ) |
| 18 | 1 17 | sselid | ⊢ ( 𝑥 𝐵 𝑦 → 𝑥 ∈ 𝐷 ) |
| 19 | 18 | pm4.71ri | ⊢ ( 𝑥 𝐵 𝑦 ↔ ( 𝑥 ∈ 𝐷 ∧ 𝑥 𝐵 𝑦 ) ) |
| 20 | 15 16 | brelrn | ⊢ ( 𝑥 𝐵 𝑦 → 𝑦 ∈ ran 𝐵 ) |
| 21 | vex | ⊢ 𝑧 ∈ V | |
| 22 | 16 21 | breldm | ⊢ ( 𝑦 𝐴 𝑧 → 𝑦 ∈ dom 𝐴 ) |
| 23 | elin | ⊢ ( 𝑦 ∈ ( ran 𝐵 ∩ dom 𝐴 ) ↔ ( 𝑦 ∈ ran 𝐵 ∧ 𝑦 ∈ dom 𝐴 ) ) | |
| 24 | 23 | biimpri | ⊢ ( ( 𝑦 ∈ ran 𝐵 ∧ 𝑦 ∈ dom 𝐴 ) → 𝑦 ∈ ( ran 𝐵 ∩ dom 𝐴 ) ) |
| 25 | 20 22 24 | syl2an | ⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑦 ∈ ( ran 𝐵 ∩ dom 𝐴 ) ) |
| 26 | 2 25 | sselid | ⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑦 ∈ 𝐸 ) |
| 27 | 26 | pm4.71ri | ⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ↔ ( 𝑦 ∈ 𝐸 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 28 | 16 21 | brelrn | ⊢ ( 𝑦 𝐴 𝑧 → 𝑧 ∈ ran 𝐴 ) |
| 29 | 3 28 | sselid | ⊢ ( 𝑦 𝐴 𝑧 → 𝑧 ∈ 𝐹 ) |
| 30 | 29 | pm4.71ri | ⊢ ( 𝑦 𝐴 𝑧 ↔ ( 𝑧 ∈ 𝐹 ∧ 𝑦 𝐴 𝑧 ) ) |
| 31 | 19 27 30 | 3anbi123i | ⊢ ( ( 𝑥 𝐵 𝑦 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∧ 𝑦 𝐴 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑥 𝐵 𝑦 ) ∧ ( 𝑦 ∈ 𝐸 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 32 | 3an6 | ⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑥 𝐵 𝑦 ) ∧ ( 𝑦 ∈ 𝐸 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑦 𝐴 𝑧 ) ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) ∧ ( 𝑥 𝐵 𝑦 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∧ 𝑦 𝐴 𝑧 ) ) ) | |
| 33 | 13 12 | impbii | ⊢ ( ( 𝑥 𝐵 𝑦 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∧ 𝑦 𝐴 𝑧 ) ↔ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) |
| 34 | 33 | anbi2i | ⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) ∧ ( 𝑥 𝐵 𝑦 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ∧ 𝑦 𝐴 𝑧 ) ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 35 | 32 34 | bitri | ⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑥 𝐵 𝑦 ) ∧ ( 𝑦 ∈ 𝐸 ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ∧ ( 𝑧 ∈ 𝐹 ∧ 𝑦 𝐴 𝑧 ) ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 36 | 14 31 35 | 3bitri | ⊢ ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) ) |
| 37 | 36 | imbi1i | ⊢ ( ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) → 𝑥 𝐶 𝑧 ) ) |
| 38 | impexp | ⊢ ( ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) ∧ ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) ) → 𝑥 𝐶 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) | |
| 39 | 3impexp | ⊢ ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ∧ 𝑧 ∈ 𝐹 ) → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ↔ ( 𝑥 ∈ 𝐷 → ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ) | |
| 40 | 37 38 39 | 3bitri | ⊢ ( ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ( 𝑥 ∈ 𝐷 → ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ) |
| 41 | 40 | albii | ⊢ ( ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑧 ( 𝑥 ∈ 𝐷 → ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ) |
| 42 | 41 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( 𝑥 ∈ 𝐷 → ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ) |
| 43 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐷 → ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) ) | |
| 44 | 8 42 43 | 3bitr4i | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) |
| 45 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐸 → ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) | |
| 46 | 19.21v | ⊢ ( ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ↔ ( 𝑦 ∈ 𝐸 → ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) | |
| 47 | 46 | bicomi | ⊢ ( ( 𝑦 ∈ 𝐸 → ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ↔ ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) |
| 48 | 47 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐸 → ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ↔ ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) |
| 49 | 45 48 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ↔ ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ) |
| 50 | 49 | bicomi | ⊢ ( ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ↔ ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) |
| 51 | 50 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∀ 𝑧 ( 𝑦 ∈ 𝐸 → ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) ↔ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) |
| 52 | 44 51 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) |
| 53 | df-ral | ⊢ ( ∀ 𝑧 ∈ 𝐹 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ) | |
| 54 | 53 | bicomi | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐹 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 55 | 54 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ∈ 𝐹 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 56 | 55 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ( 𝑧 ∈ 𝐹 → ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ∈ 𝐹 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |
| 57 | 4 52 56 | 3bitri | ⊢ ( ( 𝐴 ∘ 𝐵 ) ⊆ 𝐶 ↔ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐸 ∀ 𝑧 ∈ 𝐹 ( ( 𝑥 𝐵 𝑦 ∧ 𝑦 𝐴 𝑧 ) → 𝑥 𝐶 𝑧 ) ) |