This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is transitive. Special instance of cotr2g . (Contributed by RP, 22-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cotr2.a | ⊢ dom 𝑅 ⊆ 𝐴 | |
| cotr2.b | ⊢ ( dom 𝑅 ∩ ran 𝑅 ) ⊆ 𝐵 | ||
| cotr2.c | ⊢ ran 𝑅 ⊆ 𝐶 | ||
| Assertion | cotr2 | ⊢ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cotr2.a | ⊢ dom 𝑅 ⊆ 𝐴 | |
| 2 | cotr2.b | ⊢ ( dom 𝑅 ∩ ran 𝑅 ) ⊆ 𝐵 | |
| 3 | cotr2.c | ⊢ ran 𝑅 ⊆ 𝐶 | |
| 4 | incom | ⊢ ( dom 𝑅 ∩ ran 𝑅 ) = ( ran 𝑅 ∩ dom 𝑅 ) | |
| 5 | 4 2 | eqsstrri | ⊢ ( ran 𝑅 ∩ dom 𝑅 ) ⊆ 𝐵 |
| 6 | 1 5 3 | cotr2g | ⊢ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) |