This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cossub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ ( 𝐴 − 𝐵 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | ⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) | |
| 2 | cosadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( cos ‘ ( 𝐴 + - 𝐵 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐵 ) ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ ( 𝐴 + - 𝐵 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐵 ) ) ) ) |
| 4 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 5 | 4 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ ( 𝐴 + - 𝐵 ) ) = ( cos ‘ ( 𝐴 − 𝐵 ) ) ) |
| 6 | cosneg | ⊢ ( 𝐵 ∈ ℂ → ( cos ‘ - 𝐵 ) = ( cos ‘ 𝐵 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ - 𝐵 ) = ( cos ‘ 𝐵 ) ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐵 ) ) = ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) |
| 9 | sinneg | ⊢ ( 𝐵 ∈ ℂ → ( sin ‘ - 𝐵 ) = - ( sin ‘ 𝐵 ) ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ - 𝐵 ) = - ( sin ‘ 𝐵 ) ) |
| 11 | 10 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐵 ) ) = ( ( sin ‘ 𝐴 ) · - ( sin ‘ 𝐵 ) ) ) |
| 12 | sincl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) | |
| 13 | sincl | ⊢ ( 𝐵 ∈ ℂ → ( sin ‘ 𝐵 ) ∈ ℂ ) | |
| 14 | mulneg2 | ⊢ ( ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐵 ) ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · - ( sin ‘ 𝐵 ) ) = - ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) | |
| 15 | 12 13 14 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · - ( sin ‘ 𝐵 ) ) = - ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) |
| 16 | 11 15 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐵 ) ) = - ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) |
| 17 | 8 16 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐵 ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − - ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 18 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 19 | coscl | ⊢ ( 𝐵 ∈ ℂ → ( cos ‘ 𝐵 ) ∈ ℂ ) | |
| 20 | mulcl | ⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐵 ) ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ∈ ℂ ) | |
| 21 | 18 19 20 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ∈ ℂ ) |
| 22 | mulcl | ⊢ ( ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐵 ) ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ∈ ℂ ) | |
| 23 | 12 13 22 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ∈ ℂ ) |
| 24 | 21 23 | subnegd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − - ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 25 | 17 24 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ - 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ - 𝐵 ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 26 | 3 5 25 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ ( 𝐴 − 𝐵 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |