This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cossub | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A - B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | |- ( B e. CC -> -u B e. CC ) |
|
| 2 | cosadd | |- ( ( A e. CC /\ -u B e. CC ) -> ( cos ` ( A + -u B ) ) = ( ( ( cos ` A ) x. ( cos ` -u B ) ) - ( ( sin ` A ) x. ( sin ` -u B ) ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A + -u B ) ) = ( ( ( cos ` A ) x. ( cos ` -u B ) ) - ( ( sin ` A ) x. ( sin ` -u B ) ) ) ) |
| 4 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
| 5 | 4 | fveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A + -u B ) ) = ( cos ` ( A - B ) ) ) |
| 6 | cosneg | |- ( B e. CC -> ( cos ` -u B ) = ( cos ` B ) ) |
|
| 7 | 6 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` -u B ) = ( cos ` B ) ) |
| 8 | 7 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` -u B ) ) = ( ( cos ` A ) x. ( cos ` B ) ) ) |
| 9 | sinneg | |- ( B e. CC -> ( sin ` -u B ) = -u ( sin ` B ) ) |
|
| 10 | 9 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( sin ` -u B ) = -u ( sin ` B ) ) |
| 11 | 10 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( sin ` -u B ) ) = ( ( sin ` A ) x. -u ( sin ` B ) ) ) |
| 12 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 13 | sincl | |- ( B e. CC -> ( sin ` B ) e. CC ) |
|
| 14 | mulneg2 | |- ( ( ( sin ` A ) e. CC /\ ( sin ` B ) e. CC ) -> ( ( sin ` A ) x. -u ( sin ` B ) ) = -u ( ( sin ` A ) x. ( sin ` B ) ) ) |
|
| 15 | 12 13 14 | syl2an | |- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. -u ( sin ` B ) ) = -u ( ( sin ` A ) x. ( sin ` B ) ) ) |
| 16 | 11 15 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( sin ` -u B ) ) = -u ( ( sin ` A ) x. ( sin ` B ) ) ) |
| 17 | 8 16 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( cos ` -u B ) ) - ( ( sin ` A ) x. ( sin ` -u B ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - -u ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 18 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 19 | coscl | |- ( B e. CC -> ( cos ` B ) e. CC ) |
|
| 20 | mulcl | |- ( ( ( cos ` A ) e. CC /\ ( cos ` B ) e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) |
|
| 21 | 18 19 20 | syl2an | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) |
| 22 | mulcl | |- ( ( ( sin ` A ) e. CC /\ ( sin ` B ) e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) |
|
| 23 | 12 13 22 | syl2an | |- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) |
| 24 | 21 23 | subnegd | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) - -u ( ( sin ` A ) x. ( sin ` B ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 25 | 17 24 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( cos ` -u B ) ) - ( ( sin ` A ) x. ( sin ` -u B ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 26 | 3 5 25 | 3eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A - B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) ) |