This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd and cossub . (Contributed by David A. Wheeler, 26-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) = ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | coscl | ⊢ ( 𝐵 ∈ ℂ → ( cos ‘ 𝐵 ) ∈ ℂ ) | |
| 3 | mulcl | ⊢ ( ( ( cos ‘ 𝐴 ) ∈ ℂ ∧ ( cos ‘ 𝐵 ) ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ∈ ℂ ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ∈ ℂ ) |
| 5 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 6 | 3anass | ⊢ ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) ↔ ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) ) | |
| 7 | 4 5 6 | sylanblrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
| 8 | divcan3 | ⊢ ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) / 2 ) = ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) / 2 ) = ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) |
| 10 | sincl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) | |
| 11 | sincl | ⊢ ( 𝐵 ∈ ℂ → ( sin ‘ 𝐵 ) ∈ ℂ ) | |
| 12 | mulcl | ⊢ ( ( ( sin ‘ 𝐴 ) ∈ ℂ ∧ ( sin ‘ 𝐵 ) ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ∈ ℂ ) | |
| 13 | 10 11 12 | syl2an | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ∈ ℂ ) |
| 14 | 4 13 4 | ppncand | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) ) |
| 15 | cossub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ ( 𝐴 − 𝐵 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) | |
| 16 | cosadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) | |
| 17 | 15 16 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ ( 𝐴 − 𝐵 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) + ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) ) |
| 18 | 4 | 2timesd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) ) |
| 19 | 14 17 18 | 3eqtr4rd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 2 · ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) = ( ( cos ‘ ( 𝐴 − 𝐵 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 20 | 19 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 2 · ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) / 2 ) = ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) ) |
| 21 | 9 20 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) = ( ( ( cos ‘ ( 𝐴 − 𝐵 ) ) + ( cos ‘ ( 𝐴 + 𝐵 ) ) ) / 2 ) ) |