This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of cosines can be rewritten as half the sum of certain cosines. This follows from cosadd and cossub . (Contributed by David A. Wheeler, 26-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosmul | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( A + B ) ) ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 2 | coscl | |- ( B e. CC -> ( cos ` B ) e. CC ) |
|
| 3 | mulcl | |- ( ( ( cos ` A ) e. CC /\ ( cos ` B ) e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) |
| 5 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 6 | 3anass | |- ( ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) <-> ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) ) |
|
| 7 | 4 5 6 | sylanblrc | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) ) |
| 8 | divcan3 | |- ( ( ( ( cos ` A ) x. ( cos ` B ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. ( ( cos ` A ) x. ( cos ` B ) ) ) / 2 ) = ( ( cos ` A ) x. ( cos ` B ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. ( ( cos ` A ) x. ( cos ` B ) ) ) / 2 ) = ( ( cos ` A ) x. ( cos ` B ) ) ) |
| 10 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 11 | sincl | |- ( B e. CC -> ( sin ` B ) e. CC ) |
|
| 12 | mulcl | |- ( ( ( sin ` A ) e. CC /\ ( sin ` B ) e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) |
|
| 13 | 10 11 12 | syl2an | |- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) |
| 14 | 4 13 4 | ppncand | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) + ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( cos ` B ) ) ) ) |
| 15 | cossub | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A - B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
|
| 16 | cosadd | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A + B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
|
| 17 | 15 16 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` ( A - B ) ) + ( cos ` ( A + B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( sin ` A ) x. ( sin ` B ) ) ) + ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) ) |
| 18 | 4 | 2timesd | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( cos ` A ) x. ( cos ` B ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( cos ` B ) ) ) ) |
| 19 | 14 17 18 | 3eqtr4rd | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( cos ` A ) x. ( cos ` B ) ) ) = ( ( cos ` ( A - B ) ) + ( cos ` ( A + B ) ) ) ) |
| 20 | 19 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. ( ( cos ` A ) x. ( cos ` B ) ) ) / 2 ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( A + B ) ) ) / 2 ) ) |
| 21 | 9 20 | eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) = ( ( ( cos ` ( A - B ) ) + ( cos ` ( A + B ) ) ) / 2 ) ) |