This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arctangent function has range contained in the domain of the tangent. (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosatanne0 | ⊢ ( 𝐴 ∈ dom arctan → ( cos ‘ ( arctan ‘ 𝐴 ) ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosatan | ⊢ ( 𝐴 ∈ dom arctan → ( cos ‘ ( arctan ‘ 𝐴 ) ) = ( 1 / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) ) | |
| 2 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 3 | atandm4 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ≠ 0 ) ) | |
| 4 | 3 | simplbi | ⊢ ( 𝐴 ∈ dom arctan → 𝐴 ∈ ℂ ) |
| 5 | 4 | sqcld | ⊢ ( 𝐴 ∈ dom arctan → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 6 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℂ ) | |
| 7 | 2 5 6 | sylancr | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 8 | 7 | sqrtcld | ⊢ ( 𝐴 ∈ dom arctan → ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 9 | 7 | sqsqrtd | ⊢ ( 𝐴 ∈ dom arctan → ( ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) = ( 1 + ( 𝐴 ↑ 2 ) ) ) |
| 10 | 3 | simprbi | ⊢ ( 𝐴 ∈ dom arctan → ( 1 + ( 𝐴 ↑ 2 ) ) ≠ 0 ) |
| 11 | 9 10 | eqnetrd | ⊢ ( 𝐴 ∈ dom arctan → ( ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ≠ 0 ) |
| 12 | sqne0 | ⊢ ( ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ∈ ℂ → ( ( ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ≠ 0 ↔ ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ≠ 0 ) ) | |
| 13 | 8 12 | syl | ⊢ ( 𝐴 ∈ dom arctan → ( ( ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ↑ 2 ) ≠ 0 ↔ ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ≠ 0 ) ) |
| 14 | 11 13 | mpbid | ⊢ ( 𝐴 ∈ dom arctan → ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ≠ 0 ) |
| 15 | 8 14 | recne0d | ⊢ ( 𝐴 ∈ dom arctan → ( 1 / ( √ ‘ ( 1 + ( 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) |
| 16 | 1 15 | eqnetrd | ⊢ ( 𝐴 ∈ dom arctan → ( cos ‘ ( arctan ‘ 𝐴 ) ) ≠ 0 ) |