This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of the arcsine of A is sqrt ( 1 - A ^ 2 ) . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosasin | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( arcsin ‘ 𝐴 ) ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asincl | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | cosval | ⊢ ( ( arcsin ‘ 𝐴 ) ∈ ℂ → ( cos ‘ ( arcsin ‘ 𝐴 ) ) = ( ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) + ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) / 2 ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( arcsin ‘ 𝐴 ) ) = ( ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) + ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) / 2 ) ) |
| 4 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 5 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 6 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) | |
| 7 | 4 5 6 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 8 | 7 | sqrtcld | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 9 | ax-icn | ⊢ i ∈ ℂ | |
| 10 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 11 | 9 10 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 12 | 8 11 8 | ppncand | ⊢ ( 𝐴 ∈ ℂ → ( ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + ( i · 𝐴 ) ) + ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) − ( i · 𝐴 ) ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 13 | efiasin | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) | |
| 14 | 11 8 13 | comraddd | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + ( i · 𝐴 ) ) ) |
| 15 | mulneg12 | ⊢ ( ( i ∈ ℂ ∧ ( arcsin ‘ 𝐴 ) ∈ ℂ ) → ( - i · ( arcsin ‘ 𝐴 ) ) = ( i · - ( arcsin ‘ 𝐴 ) ) ) | |
| 16 | 9 1 15 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( - i · ( arcsin ‘ 𝐴 ) ) = ( i · - ( arcsin ‘ 𝐴 ) ) ) |
| 17 | asinneg | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ - 𝐴 ) = - ( arcsin ‘ 𝐴 ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( i · ( arcsin ‘ - 𝐴 ) ) = ( i · - ( arcsin ‘ 𝐴 ) ) ) |
| 19 | 16 18 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( - i · ( arcsin ‘ 𝐴 ) ) = ( i · ( arcsin ‘ - 𝐴 ) ) ) |
| 20 | 19 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) = ( exp ‘ ( i · ( arcsin ‘ - 𝐴 ) ) ) ) |
| 21 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 22 | efiasin | ⊢ ( - 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ - 𝐴 ) ) ) = ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) | |
| 23 | 21 22 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ - 𝐴 ) ) ) = ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) |
| 24 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) | |
| 25 | 9 24 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 26 | sqneg | ⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) | |
| 27 | 26 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( 1 − ( - 𝐴 ↑ 2 ) ) = ( 1 − ( 𝐴 ↑ 2 ) ) ) |
| 28 | 27 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
| 29 | 25 28 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) = ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 30 | 20 23 29 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) = ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 31 | 11 | negcld | ⊢ ( 𝐴 ∈ ℂ → - ( i · 𝐴 ) ∈ ℂ ) |
| 32 | 31 8 | addcomd | ⊢ ( 𝐴 ∈ ℂ → ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + - ( i · 𝐴 ) ) ) |
| 33 | 8 11 | negsubd | ⊢ ( 𝐴 ∈ ℂ → ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + - ( i · 𝐴 ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) − ( i · 𝐴 ) ) ) |
| 34 | 30 32 33 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) − ( i · 𝐴 ) ) ) |
| 35 | 14 34 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) + ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) = ( ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + ( i · 𝐴 ) ) + ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) − ( i · 𝐴 ) ) ) ) |
| 36 | 8 | 2timesd | ⊢ ( 𝐴 ∈ ℂ → ( 2 · ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) = ( ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 37 | 12 35 36 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) + ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) = ( 2 · ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 38 | 37 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) + ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) / 2 ) = ( ( 2 · ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) / 2 ) ) |
| 39 | 2cnd | ⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℂ ) | |
| 40 | 2ne0 | ⊢ 2 ≠ 0 | |
| 41 | 40 | a1i | ⊢ ( 𝐴 ∈ ℂ → 2 ≠ 0 ) |
| 42 | 8 39 41 | divcan3d | ⊢ ( 𝐴 ∈ ℂ → ( ( 2 · ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) / 2 ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
| 43 | 3 38 42 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( arcsin ‘ 𝐴 ) ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |