This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential of the arcsine function. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efiasin | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asinval | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) = ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( i · ( arcsin ‘ 𝐴 ) ) = ( i · ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) ) |
| 3 | ax-icn | ⊢ i ∈ ℂ | |
| 4 | 3 | a1i | ⊢ ( 𝐴 ∈ ℂ → i ∈ ℂ ) |
| 5 | negicn | ⊢ - i ∈ ℂ | |
| 6 | 5 | a1i | ⊢ ( 𝐴 ∈ ℂ → - i ∈ ℂ ) |
| 7 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 8 | 3 7 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 9 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 10 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 11 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) | |
| 12 | 9 10 11 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 13 | 12 | sqrtcld | ⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 14 | 8 13 | addcld | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ) |
| 15 | asinlem | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) | |
| 16 | 14 15 | logcld | ⊢ ( 𝐴 ∈ ℂ → ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ℂ ) |
| 17 | 4 6 16 | mulassd | ⊢ ( 𝐴 ∈ ℂ → ( ( i · - i ) · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( i · ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) ) |
| 18 | 3 3 | mulneg2i | ⊢ ( i · - i ) = - ( i · i ) |
| 19 | ixi | ⊢ ( i · i ) = - 1 | |
| 20 | 19 | negeqi | ⊢ - ( i · i ) = - - 1 |
| 21 | negneg1e1 | ⊢ - - 1 = 1 | |
| 22 | 18 20 21 | 3eqtri | ⊢ ( i · - i ) = 1 |
| 23 | 22 | oveq1i | ⊢ ( ( i · - i ) · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( 1 · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 24 | 16 | mullidd | ⊢ ( 𝐴 ∈ ℂ → ( 1 · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 25 | 23 24 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( i · - i ) · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 26 | 2 17 25 | 3eqtr2d | ⊢ ( 𝐴 ∈ ℂ → ( i · ( arcsin ‘ 𝐴 ) ) = ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 27 | 26 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) = ( exp ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 28 | eflog | ⊢ ( ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ∧ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) → ( exp ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) | |
| 29 | 14 15 28 | syl2anc | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 30 | 27 29 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |