This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of the arccosine of A is sqrt ( 1 - A ^ 2 ) . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinacos | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( arccos ‘ 𝐴 ) ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acosval | ⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( arccos ‘ 𝐴 ) ) = ( ( π / 2 ) − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) ) |
| 3 | picn | ⊢ π ∈ ℂ | |
| 4 | halfcl | ⊢ ( π ∈ ℂ → ( π / 2 ) ∈ ℂ ) | |
| 5 | 3 4 | ax-mp | ⊢ ( π / 2 ) ∈ ℂ |
| 6 | asincl | ⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) ∈ ℂ ) | |
| 7 | nncan | ⊢ ( ( ( π / 2 ) ∈ ℂ ∧ ( arcsin ‘ 𝐴 ) ∈ ℂ ) → ( ( π / 2 ) − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( arcsin ‘ 𝐴 ) ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( arcsin ‘ 𝐴 ) ) |
| 9 | 2 8 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( arccos ‘ 𝐴 ) ) = ( arcsin ‘ 𝐴 ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − ( arccos ‘ 𝐴 ) ) ) = ( cos ‘ ( arcsin ‘ 𝐴 ) ) ) |
| 11 | acoscl | ⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) ∈ ℂ ) | |
| 12 | coshalfpim | ⊢ ( ( arccos ‘ 𝐴 ) ∈ ℂ → ( cos ‘ ( ( π / 2 ) − ( arccos ‘ 𝐴 ) ) ) = ( sin ‘ ( arccos ‘ 𝐴 ) ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − ( arccos ‘ 𝐴 ) ) ) = ( sin ‘ ( arccos ‘ 𝐴 ) ) ) |
| 14 | cosasin | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( arcsin ‘ 𝐴 ) ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) | |
| 15 | 10 13 14 | 3eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( arccos ‘ 𝐴 ) ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |