This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of the arcsine of A is sqrt ( 1 - A ^ 2 ) . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosasin | |- ( A e. CC -> ( cos ` ( arcsin ` A ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asincl | |- ( A e. CC -> ( arcsin ` A ) e. CC ) |
|
| 2 | cosval | |- ( ( arcsin ` A ) e. CC -> ( cos ` ( arcsin ` A ) ) = ( ( ( exp ` ( _i x. ( arcsin ` A ) ) ) + ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) / 2 ) ) |
|
| 3 | 1 2 | syl | |- ( A e. CC -> ( cos ` ( arcsin ` A ) ) = ( ( ( exp ` ( _i x. ( arcsin ` A ) ) ) + ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) / 2 ) ) |
| 4 | ax-1cn | |- 1 e. CC |
|
| 5 | sqcl | |- ( A e. CC -> ( A ^ 2 ) e. CC ) |
|
| 6 | subcl | |- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - ( A ^ 2 ) ) e. CC ) |
|
| 7 | 4 5 6 | sylancr | |- ( A e. CC -> ( 1 - ( A ^ 2 ) ) e. CC ) |
| 8 | 7 | sqrtcld | |- ( A e. CC -> ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) |
| 9 | ax-icn | |- _i e. CC |
|
| 10 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 11 | 9 10 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 12 | 8 11 8 | ppncand | |- ( A e. CC -> ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) + ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 13 | efiasin | |- ( A e. CC -> ( exp ` ( _i x. ( arcsin ` A ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
|
| 14 | 11 8 13 | comraddd | |- ( A e. CC -> ( exp ` ( _i x. ( arcsin ` A ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) ) |
| 15 | mulneg12 | |- ( ( _i e. CC /\ ( arcsin ` A ) e. CC ) -> ( -u _i x. ( arcsin ` A ) ) = ( _i x. -u ( arcsin ` A ) ) ) |
|
| 16 | 9 1 15 | sylancr | |- ( A e. CC -> ( -u _i x. ( arcsin ` A ) ) = ( _i x. -u ( arcsin ` A ) ) ) |
| 17 | asinneg | |- ( A e. CC -> ( arcsin ` -u A ) = -u ( arcsin ` A ) ) |
|
| 18 | 17 | oveq2d | |- ( A e. CC -> ( _i x. ( arcsin ` -u A ) ) = ( _i x. -u ( arcsin ` A ) ) ) |
| 19 | 16 18 | eqtr4d | |- ( A e. CC -> ( -u _i x. ( arcsin ` A ) ) = ( _i x. ( arcsin ` -u A ) ) ) |
| 20 | 19 | fveq2d | |- ( A e. CC -> ( exp ` ( -u _i x. ( arcsin ` A ) ) ) = ( exp ` ( _i x. ( arcsin ` -u A ) ) ) ) |
| 21 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 22 | efiasin | |- ( -u A e. CC -> ( exp ` ( _i x. ( arcsin ` -u A ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) |
|
| 23 | 21 22 | syl | |- ( A e. CC -> ( exp ` ( _i x. ( arcsin ` -u A ) ) ) = ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) ) |
| 24 | mulneg2 | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) |
|
| 25 | 9 24 | mpan | |- ( A e. CC -> ( _i x. -u A ) = -u ( _i x. A ) ) |
| 26 | sqneg | |- ( A e. CC -> ( -u A ^ 2 ) = ( A ^ 2 ) ) |
|
| 27 | 26 | oveq2d | |- ( A e. CC -> ( 1 - ( -u A ^ 2 ) ) = ( 1 - ( A ^ 2 ) ) ) |
| 28 | 27 | fveq2d | |- ( A e. CC -> ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |
| 29 | 25 28 | oveq12d | |- ( A e. CC -> ( ( _i x. -u A ) + ( sqrt ` ( 1 - ( -u A ^ 2 ) ) ) ) = ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 30 | 20 23 29 | 3eqtrd | |- ( A e. CC -> ( exp ` ( -u _i x. ( arcsin ` A ) ) ) = ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 31 | 11 | negcld | |- ( A e. CC -> -u ( _i x. A ) e. CC ) |
| 32 | 31 8 | addcomd | |- ( A e. CC -> ( -u ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + -u ( _i x. A ) ) ) |
| 33 | 8 11 | negsubd | |- ( A e. CC -> ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + -u ( _i x. A ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) |
| 34 | 30 32 33 | 3eqtrd | |- ( A e. CC -> ( exp ` ( -u _i x. ( arcsin ` A ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) |
| 35 | 14 34 | oveq12d | |- ( A e. CC -> ( ( exp ` ( _i x. ( arcsin ` A ) ) ) + ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) = ( ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( _i x. A ) ) + ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) - ( _i x. A ) ) ) ) |
| 36 | 8 | 2timesd | |- ( A e. CC -> ( 2 x. ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) = ( ( sqrt ` ( 1 - ( A ^ 2 ) ) ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 37 | 12 35 36 | 3eqtr4d | |- ( A e. CC -> ( ( exp ` ( _i x. ( arcsin ` A ) ) ) + ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) = ( 2 x. ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 38 | 37 | oveq1d | |- ( A e. CC -> ( ( ( exp ` ( _i x. ( arcsin ` A ) ) ) + ( exp ` ( -u _i x. ( arcsin ` A ) ) ) ) / 2 ) = ( ( 2 x. ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) / 2 ) ) |
| 39 | 2cnd | |- ( A e. CC -> 2 e. CC ) |
|
| 40 | 2ne0 | |- 2 =/= 0 |
|
| 41 | 40 | a1i | |- ( A e. CC -> 2 =/= 0 ) |
| 42 | 8 39 41 | divcan3d | |- ( A e. CC -> ( ( 2 x. ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) / 2 ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |
| 43 | 3 38 42 | 3eqtrd | |- ( A e. CC -> ( cos ` ( arcsin ` A ) ) = ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) |