This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a topology is connected, its underlying set can't be partitioned into two nonempty non-overlapping open sets. (Contributed by FL, 16-Nov-2008) (Proof shortened by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isconn.1 | ||
| connclo.1 | |||
| connclo.2 | |||
| connclo.3 | |||
| conndisj.4 | |||
| conndisj.5 | |||
| conndisj.6 | |||
| Assertion | conndisj |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isconn.1 | ||
| 2 | connclo.1 | ||
| 3 | connclo.2 | ||
| 4 | connclo.3 | ||
| 5 | conndisj.4 | ||
| 6 | conndisj.5 | ||
| 7 | conndisj.6 | ||
| 8 | elssuni | ||
| 9 | 3 8 | syl | |
| 10 | 9 1 | sseqtrrdi | |
| 11 | uneqdifeq | ||
| 12 | 10 7 11 | syl2anc | |
| 13 | simpr | ||
| 14 | 13 | difeq2d | |
| 15 | dfss4 | ||
| 16 | 10 15 | sylib | |
| 17 | 16 | adantr | |
| 18 | 2 | adantr | |
| 19 | 5 | adantr | |
| 20 | 6 | adantr | |
| 21 | 1 | isconn | |
| 22 | 21 | simplbi | |
| 23 | 2 22 | syl | |
| 24 | 1 | opncld | |
| 25 | 23 3 24 | syl2anc | |
| 26 | 25 | adantr | |
| 27 | 13 26 | eqeltrrd | |
| 28 | 1 18 19 20 27 | connclo | |
| 29 | 28 | difeq2d | |
| 30 | difid | ||
| 31 | 29 30 | eqtrdi | |
| 32 | 14 17 31 | 3eqtr3d | |
| 33 | 32 | ex | |
| 34 | 12 33 | sylbid | |
| 35 | 34 | necon3d | |
| 36 | 4 35 | mpd |