This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a topology is connected, its underlying set can't be partitioned into two nonempty non-overlapping open sets. (Contributed by FL, 16-Nov-2008) (Proof shortened by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isconn.1 | |- X = U. J |
|
| connclo.1 | |- ( ph -> J e. Conn ) |
||
| connclo.2 | |- ( ph -> A e. J ) |
||
| connclo.3 | |- ( ph -> A =/= (/) ) |
||
| conndisj.4 | |- ( ph -> B e. J ) |
||
| conndisj.5 | |- ( ph -> B =/= (/) ) |
||
| conndisj.6 | |- ( ph -> ( A i^i B ) = (/) ) |
||
| Assertion | conndisj | |- ( ph -> ( A u. B ) =/= X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isconn.1 | |- X = U. J |
|
| 2 | connclo.1 | |- ( ph -> J e. Conn ) |
|
| 3 | connclo.2 | |- ( ph -> A e. J ) |
|
| 4 | connclo.3 | |- ( ph -> A =/= (/) ) |
|
| 5 | conndisj.4 | |- ( ph -> B e. J ) |
|
| 6 | conndisj.5 | |- ( ph -> B =/= (/) ) |
|
| 7 | conndisj.6 | |- ( ph -> ( A i^i B ) = (/) ) |
|
| 8 | elssuni | |- ( A e. J -> A C_ U. J ) |
|
| 9 | 3 8 | syl | |- ( ph -> A C_ U. J ) |
| 10 | 9 1 | sseqtrrdi | |- ( ph -> A C_ X ) |
| 11 | uneqdifeq | |- ( ( A C_ X /\ ( A i^i B ) = (/) ) -> ( ( A u. B ) = X <-> ( X \ A ) = B ) ) |
|
| 12 | 10 7 11 | syl2anc | |- ( ph -> ( ( A u. B ) = X <-> ( X \ A ) = B ) ) |
| 13 | simpr | |- ( ( ph /\ ( X \ A ) = B ) -> ( X \ A ) = B ) |
|
| 14 | 13 | difeq2d | |- ( ( ph /\ ( X \ A ) = B ) -> ( X \ ( X \ A ) ) = ( X \ B ) ) |
| 15 | dfss4 | |- ( A C_ X <-> ( X \ ( X \ A ) ) = A ) |
|
| 16 | 10 15 | sylib | |- ( ph -> ( X \ ( X \ A ) ) = A ) |
| 17 | 16 | adantr | |- ( ( ph /\ ( X \ A ) = B ) -> ( X \ ( X \ A ) ) = A ) |
| 18 | 2 | adantr | |- ( ( ph /\ ( X \ A ) = B ) -> J e. Conn ) |
| 19 | 5 | adantr | |- ( ( ph /\ ( X \ A ) = B ) -> B e. J ) |
| 20 | 6 | adantr | |- ( ( ph /\ ( X \ A ) = B ) -> B =/= (/) ) |
| 21 | 1 | isconn | |- ( J e. Conn <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) = { (/) , X } ) ) |
| 22 | 21 | simplbi | |- ( J e. Conn -> J e. Top ) |
| 23 | 2 22 | syl | |- ( ph -> J e. Top ) |
| 24 | 1 | opncld | |- ( ( J e. Top /\ A e. J ) -> ( X \ A ) e. ( Clsd ` J ) ) |
| 25 | 23 3 24 | syl2anc | |- ( ph -> ( X \ A ) e. ( Clsd ` J ) ) |
| 26 | 25 | adantr | |- ( ( ph /\ ( X \ A ) = B ) -> ( X \ A ) e. ( Clsd ` J ) ) |
| 27 | 13 26 | eqeltrrd | |- ( ( ph /\ ( X \ A ) = B ) -> B e. ( Clsd ` J ) ) |
| 28 | 1 18 19 20 27 | connclo | |- ( ( ph /\ ( X \ A ) = B ) -> B = X ) |
| 29 | 28 | difeq2d | |- ( ( ph /\ ( X \ A ) = B ) -> ( X \ B ) = ( X \ X ) ) |
| 30 | difid | |- ( X \ X ) = (/) |
|
| 31 | 29 30 | eqtrdi | |- ( ( ph /\ ( X \ A ) = B ) -> ( X \ B ) = (/) ) |
| 32 | 14 17 31 | 3eqtr3d | |- ( ( ph /\ ( X \ A ) = B ) -> A = (/) ) |
| 33 | 32 | ex | |- ( ph -> ( ( X \ A ) = B -> A = (/) ) ) |
| 34 | 12 33 | sylbid | |- ( ph -> ( ( A u. B ) = X -> A = (/) ) ) |
| 35 | 34 | necon3d | |- ( ph -> ( A =/= (/) -> ( A u. B ) =/= X ) ) |
| 36 | 4 35 | mpd | |- ( ph -> ( A u. B ) =/= X ) |