This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate J is a connected topology . (Contributed by FL, 17-Nov-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isconn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | isconn | ⊢ ( 𝐽 ∈ Conn ↔ ( 𝐽 ∈ Top ∧ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isconn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | id | ⊢ ( 𝑗 = 𝐽 → 𝑗 = 𝐽 ) | |
| 3 | fveq2 | ⊢ ( 𝑗 = 𝐽 → ( Clsd ‘ 𝑗 ) = ( Clsd ‘ 𝐽 ) ) | |
| 4 | 2 3 | ineq12d | ⊢ ( 𝑗 = 𝐽 → ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) ) |
| 5 | unieq | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = 𝑋 ) |
| 7 | 6 | preq2d | ⊢ ( 𝑗 = 𝐽 → { ∅ , ∪ 𝑗 } = { ∅ , 𝑋 } ) |
| 8 | 4 7 | eqeq12d | ⊢ ( 𝑗 = 𝐽 → ( ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , ∪ 𝑗 } ↔ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) ) |
| 9 | df-conn | ⊢ Conn = { 𝑗 ∈ Top ∣ ( 𝑗 ∩ ( Clsd ‘ 𝑗 ) ) = { ∅ , ∪ 𝑗 } } | |
| 10 | 8 9 | elrab2 | ⊢ ( 𝐽 ∈ Conn ↔ ( 𝐽 ∈ Top ∧ ( 𝐽 ∩ ( Clsd ‘ 𝐽 ) ) = { ∅ , 𝑋 } ) ) |