This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | conncn.x | ⊢ 𝑋 = ∪ 𝐽 | |
| conncn.j | ⊢ ( 𝜑 → 𝐽 ∈ Conn ) | ||
| conncn.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| conncn.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝐾 ) | ||
| conncn.c | ⊢ ( 𝜑 → 𝑈 ∈ ( Clsd ‘ 𝐾 ) ) | ||
| conncn.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| conncn.1 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) | ||
| Assertion | conncn | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conncn.x | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | conncn.j | ⊢ ( 𝜑 → 𝐽 ∈ Conn ) | |
| 3 | conncn.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 4 | conncn.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝐾 ) | |
| 5 | conncn.c | ⊢ ( 𝜑 → 𝑈 ∈ ( Clsd ‘ 𝐾 ) ) | |
| 6 | conncn.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 7 | conncn.1 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ) | |
| 8 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 9 | 1 8 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 10 | 3 9 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 11 | 10 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 12 | 10 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ∪ 𝐾 ) |
| 13 | dffn4 | ⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 –onto→ ran 𝐹 ) | |
| 14 | 11 13 | sylib | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
| 15 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 16 | 3 15 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 17 | 8 | restuni | ⊢ ( ( 𝐾 ∈ Top ∧ ran 𝐹 ⊆ ∪ 𝐾 ) → ran 𝐹 = ∪ ( 𝐾 ↾t ran 𝐹 ) ) |
| 18 | 16 12 17 | syl2anc | ⊢ ( 𝜑 → ran 𝐹 = ∪ ( 𝐾 ↾t ran 𝐹 ) ) |
| 19 | foeq3 | ⊢ ( ran 𝐹 = ∪ ( 𝐾 ↾t ran 𝐹 ) → ( 𝐹 : 𝑋 –onto→ ran 𝐹 ↔ 𝐹 : 𝑋 –onto→ ∪ ( 𝐾 ↾t ran 𝐹 ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → ( 𝐹 : 𝑋 –onto→ ran 𝐹 ↔ 𝐹 : 𝑋 –onto→ ∪ ( 𝐾 ↾t ran 𝐹 ) ) ) |
| 21 | 14 20 | mpbid | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ ∪ ( 𝐾 ↾t ran 𝐹 ) ) |
| 22 | toptopon2 | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) | |
| 23 | 16 22 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 24 | ssidd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ran 𝐹 ) | |
| 25 | cnrest2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ ∪ 𝐾 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ) ) | |
| 26 | 23 24 12 25 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ) ) |
| 27 | 3 26 | mpbid | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ) |
| 28 | eqid | ⊢ ∪ ( 𝐾 ↾t ran 𝐹 ) = ∪ ( 𝐾 ↾t ran 𝐹 ) | |
| 29 | 28 | cnconn | ⊢ ( ( 𝐽 ∈ Conn ∧ 𝐹 : 𝑋 –onto→ ∪ ( 𝐾 ↾t ran 𝐹 ) ∧ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ) → ( 𝐾 ↾t ran 𝐹 ) ∈ Conn ) |
| 30 | 2 21 27 29 | syl3anc | ⊢ ( 𝜑 → ( 𝐾 ↾t ran 𝐹 ) ∈ Conn ) |
| 31 | fnfvelrn | ⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) | |
| 32 | 11 6 31 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) |
| 33 | inelcm | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑈 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) → ( 𝑈 ∩ ran 𝐹 ) ≠ ∅ ) | |
| 34 | 7 32 33 | syl2anc | ⊢ ( 𝜑 → ( 𝑈 ∩ ran 𝐹 ) ≠ ∅ ) |
| 35 | 8 12 30 4 34 5 | connsubclo | ⊢ ( 𝜑 → ran 𝐹 ⊆ 𝑈 ) |
| 36 | df-f | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑈 ↔ ( 𝐹 Fn 𝑋 ∧ ran 𝐹 ⊆ 𝑈 ) ) | |
| 37 | 11 35 36 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑈 ) |