This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | conncn.x | |- X = U. J |
|
| conncn.j | |- ( ph -> J e. Conn ) |
||
| conncn.f | |- ( ph -> F e. ( J Cn K ) ) |
||
| conncn.u | |- ( ph -> U e. K ) |
||
| conncn.c | |- ( ph -> U e. ( Clsd ` K ) ) |
||
| conncn.a | |- ( ph -> A e. X ) |
||
| conncn.1 | |- ( ph -> ( F ` A ) e. U ) |
||
| Assertion | conncn | |- ( ph -> F : X --> U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conncn.x | |- X = U. J |
|
| 2 | conncn.j | |- ( ph -> J e. Conn ) |
|
| 3 | conncn.f | |- ( ph -> F e. ( J Cn K ) ) |
|
| 4 | conncn.u | |- ( ph -> U e. K ) |
|
| 5 | conncn.c | |- ( ph -> U e. ( Clsd ` K ) ) |
|
| 6 | conncn.a | |- ( ph -> A e. X ) |
|
| 7 | conncn.1 | |- ( ph -> ( F ` A ) e. U ) |
|
| 8 | eqid | |- U. K = U. K |
|
| 9 | 1 8 | cnf | |- ( F e. ( J Cn K ) -> F : X --> U. K ) |
| 10 | 3 9 | syl | |- ( ph -> F : X --> U. K ) |
| 11 | 10 | ffnd | |- ( ph -> F Fn X ) |
| 12 | 10 | frnd | |- ( ph -> ran F C_ U. K ) |
| 13 | dffn4 | |- ( F Fn X <-> F : X -onto-> ran F ) |
|
| 14 | 11 13 | sylib | |- ( ph -> F : X -onto-> ran F ) |
| 15 | cntop2 | |- ( F e. ( J Cn K ) -> K e. Top ) |
|
| 16 | 3 15 | syl | |- ( ph -> K e. Top ) |
| 17 | 8 | restuni | |- ( ( K e. Top /\ ran F C_ U. K ) -> ran F = U. ( K |`t ran F ) ) |
| 18 | 16 12 17 | syl2anc | |- ( ph -> ran F = U. ( K |`t ran F ) ) |
| 19 | foeq3 | |- ( ran F = U. ( K |`t ran F ) -> ( F : X -onto-> ran F <-> F : X -onto-> U. ( K |`t ran F ) ) ) |
|
| 20 | 18 19 | syl | |- ( ph -> ( F : X -onto-> ran F <-> F : X -onto-> U. ( K |`t ran F ) ) ) |
| 21 | 14 20 | mpbid | |- ( ph -> F : X -onto-> U. ( K |`t ran F ) ) |
| 22 | toptopon2 | |- ( K e. Top <-> K e. ( TopOn ` U. K ) ) |
|
| 23 | 16 22 | sylib | |- ( ph -> K e. ( TopOn ` U. K ) ) |
| 24 | ssidd | |- ( ph -> ran F C_ ran F ) |
|
| 25 | cnrest2 | |- ( ( K e. ( TopOn ` U. K ) /\ ran F C_ ran F /\ ran F C_ U. K ) -> ( F e. ( J Cn K ) <-> F e. ( J Cn ( K |`t ran F ) ) ) ) |
|
| 26 | 23 24 12 25 | syl3anc | |- ( ph -> ( F e. ( J Cn K ) <-> F e. ( J Cn ( K |`t ran F ) ) ) ) |
| 27 | 3 26 | mpbid | |- ( ph -> F e. ( J Cn ( K |`t ran F ) ) ) |
| 28 | eqid | |- U. ( K |`t ran F ) = U. ( K |`t ran F ) |
|
| 29 | 28 | cnconn | |- ( ( J e. Conn /\ F : X -onto-> U. ( K |`t ran F ) /\ F e. ( J Cn ( K |`t ran F ) ) ) -> ( K |`t ran F ) e. Conn ) |
| 30 | 2 21 27 29 | syl3anc | |- ( ph -> ( K |`t ran F ) e. Conn ) |
| 31 | fnfvelrn | |- ( ( F Fn X /\ A e. X ) -> ( F ` A ) e. ran F ) |
|
| 32 | 11 6 31 | syl2anc | |- ( ph -> ( F ` A ) e. ran F ) |
| 33 | inelcm | |- ( ( ( F ` A ) e. U /\ ( F ` A ) e. ran F ) -> ( U i^i ran F ) =/= (/) ) |
|
| 34 | 7 32 33 | syl2anc | |- ( ph -> ( U i^i ran F ) =/= (/) ) |
| 35 | 8 12 30 4 34 5 | connsubclo | |- ( ph -> ran F C_ U ) |
| 36 | df-f | |- ( F : X --> U <-> ( F Fn X /\ ran F C_ U ) ) |
|
| 37 | 11 35 36 | sylanbrc | |- ( ph -> F : X --> U ) |