This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a clopen set meets a connected subspace, it must contain the entire subspace. (Contributed by Mario Carneiro, 10-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | connsubclo.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| connsubclo.3 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) | ||
| connsubclo.4 | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝐴 ) ∈ Conn ) | ||
| connsubclo.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐽 ) | ||
| connsubclo.6 | ⊢ ( 𝜑 → ( 𝐵 ∩ 𝐴 ) ≠ ∅ ) | ||
| connsubclo.7 | ⊢ ( 𝜑 → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) | ||
| Assertion | connsubclo | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | connsubclo.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | connsubclo.3 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) | |
| 3 | connsubclo.4 | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝐴 ) ∈ Conn ) | |
| 4 | connsubclo.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐽 ) | |
| 5 | connsubclo.6 | ⊢ ( 𝜑 → ( 𝐵 ∩ 𝐴 ) ≠ ∅ ) | |
| 6 | connsubclo.7 | ⊢ ( 𝜑 → 𝐵 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 7 | eqid | ⊢ ∪ ( 𝐽 ↾t 𝐴 ) = ∪ ( 𝐽 ↾t 𝐴 ) | |
| 8 | cldrcl | ⊢ ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) | |
| 9 | 6 8 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 10 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 12 | 11 2 | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 13 | elrestr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ∧ 𝐵 ∈ 𝐽 ) → ( 𝐵 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ) | |
| 14 | 9 12 4 13 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 ∩ 𝐴 ) ∈ ( 𝐽 ↾t 𝐴 ) ) |
| 15 | eqid | ⊢ ( 𝐵 ∩ 𝐴 ) = ( 𝐵 ∩ 𝐴 ) | |
| 16 | ineq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∩ 𝐴 ) = ( 𝐵 ∩ 𝐴 ) ) | |
| 17 | 16 | rspceeqv | ⊢ ( ( 𝐵 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝐵 ∩ 𝐴 ) = ( 𝐵 ∩ 𝐴 ) ) → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( 𝐵 ∩ 𝐴 ) = ( 𝑥 ∩ 𝐴 ) ) |
| 18 | 6 15 17 | sylancl | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( 𝐵 ∩ 𝐴 ) = ( 𝑥 ∩ 𝐴 ) ) |
| 19 | 1 | restcld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → ( ( 𝐵 ∩ 𝐴 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ↔ ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( 𝐵 ∩ 𝐴 ) = ( 𝑥 ∩ 𝐴 ) ) ) |
| 20 | 9 2 19 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐵 ∩ 𝐴 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ↔ ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( 𝐵 ∩ 𝐴 ) = ( 𝑥 ∩ 𝐴 ) ) ) |
| 21 | 18 20 | mpbird | ⊢ ( 𝜑 → ( 𝐵 ∩ 𝐴 ) ∈ ( Clsd ‘ ( 𝐽 ↾t 𝐴 ) ) ) |
| 22 | 7 3 14 5 21 | connclo | ⊢ ( 𝜑 → ( 𝐵 ∩ 𝐴 ) = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 23 | 1 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 24 | 9 2 23 | syl2anc | ⊢ ( 𝜑 → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 25 | 22 24 | eqtr4d | ⊢ ( 𝜑 → ( 𝐵 ∩ 𝐴 ) = 𝐴 ) |
| 26 | sseqin2 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐵 ∩ 𝐴 ) = 𝐴 ) | |
| 27 | 25 26 | sylibr | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |