This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iunconn . (Contributed by Mario Carneiro, 11-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iunconn.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| iunconn.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ⊆ 𝑋 ) | ||
| iunconn.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑃 ∈ 𝐵 ) | ||
| iunconn.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐽 ↾t 𝐵 ) ∈ Conn ) | ||
| iunconn.6 | ⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) | ||
| iunconn.7 | ⊢ ( 𝜑 → 𝑉 ∈ 𝐽 ) | ||
| iunconn.8 | ⊢ ( 𝜑 → ( 𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵 ) ≠ ∅ ) | ||
| iunconn.9 | ⊢ ( 𝜑 → ( 𝑈 ∩ 𝑉 ) ⊆ ( 𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵 ) ) | ||
| iunconn.10 | ⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ ( 𝑈 ∪ 𝑉 ) ) | ||
| iunconn.11 | ⊢ Ⅎ 𝑘 𝜑 | ||
| Assertion | iunconnlem | ⊢ ( 𝜑 → ¬ 𝑃 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunconn.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | iunconn.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ⊆ 𝑋 ) | |
| 3 | iunconn.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑃 ∈ 𝐵 ) | |
| 4 | iunconn.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐽 ↾t 𝐵 ) ∈ Conn ) | |
| 5 | iunconn.6 | ⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) | |
| 6 | iunconn.7 | ⊢ ( 𝜑 → 𝑉 ∈ 𝐽 ) | |
| 7 | iunconn.8 | ⊢ ( 𝜑 → ( 𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵 ) ≠ ∅ ) | |
| 8 | iunconn.9 | ⊢ ( 𝜑 → ( 𝑈 ∩ 𝑉 ) ⊆ ( 𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵 ) ) | |
| 9 | iunconn.10 | ⊢ ( 𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ ( 𝑈 ∪ 𝑉 ) ) | |
| 10 | iunconn.11 | ⊢ Ⅎ 𝑘 𝜑 | |
| 11 | n0 | ⊢ ( ( 𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵 ) ) | |
| 12 | 7 11 | sylib | ⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ ( 𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 13 | elin | ⊢ ( 𝑥 ∈ ( 𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵 ) ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ ∪ 𝑘 ∈ 𝐴 𝐵 ) ) | |
| 14 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑘 ∈ 𝐴 𝐵 ↔ ∃ 𝑘 ∈ 𝐴 𝑥 ∈ 𝐵 ) | |
| 15 | nfv | ⊢ Ⅎ 𝑘 𝑥 ∈ 𝑉 | |
| 16 | 10 15 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) |
| 17 | nfv | ⊢ Ⅎ 𝑘 ¬ 𝑃 ∈ 𝑈 | |
| 18 | 4 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝐽 ↾t 𝐵 ) ∈ Conn ) |
| 19 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 20 | 2 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝐵 ⊆ 𝑋 ) |
| 21 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝑈 ∈ 𝐽 ) |
| 22 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝑉 ∈ 𝐽 ) |
| 23 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝑃 ∈ 𝑈 ) | |
| 24 | 3 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝑃 ∈ 𝐵 ) |
| 25 | inelcm | ⊢ ( ( 𝑃 ∈ 𝑈 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑈 ∩ 𝐵 ) ≠ ∅ ) | |
| 26 | 23 24 25 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( 𝑈 ∩ 𝐵 ) ≠ ∅ ) |
| 27 | inelcm | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑉 ∩ 𝐵 ) ≠ ∅ ) | |
| 28 | 27 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( 𝑉 ∩ 𝐵 ) ≠ ∅ ) |
| 29 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( 𝑈 ∩ 𝑉 ) ⊆ ( 𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 30 | ssiun2 | ⊢ ( 𝑘 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑘 ∈ 𝐴 𝐵 ) | |
| 31 | 30 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝐵 ⊆ ∪ 𝑘 ∈ 𝐴 𝐵 ) |
| 32 | 31 | sscond | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( 𝑋 ∖ ∪ 𝑘 ∈ 𝐴 𝐵 ) ⊆ ( 𝑋 ∖ 𝐵 ) ) |
| 33 | 29 32 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( 𝑈 ∩ 𝑉 ) ⊆ ( 𝑋 ∖ 𝐵 ) ) |
| 34 | inss1 | ⊢ ( 𝑈 ∩ 𝑉 ) ⊆ 𝑈 | |
| 35 | toponss | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑈 ∈ 𝐽 ) → 𝑈 ⊆ 𝑋 ) | |
| 36 | 19 21 35 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝑈 ⊆ 𝑋 ) |
| 37 | 34 36 | sstrid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( 𝑈 ∩ 𝑉 ) ⊆ 𝑋 ) |
| 38 | reldisj | ⊢ ( ( 𝑈 ∩ 𝑉 ) ⊆ 𝑋 → ( ( ( 𝑈 ∩ 𝑉 ) ∩ 𝐵 ) = ∅ ↔ ( 𝑈 ∩ 𝑉 ) ⊆ ( 𝑋 ∖ 𝐵 ) ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( ( ( 𝑈 ∩ 𝑉 ) ∩ 𝐵 ) = ∅ ↔ ( 𝑈 ∩ 𝑉 ) ⊆ ( 𝑋 ∖ 𝐵 ) ) ) |
| 40 | 33 39 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ( ( 𝑈 ∩ 𝑉 ) ∩ 𝐵 ) = ∅ ) |
| 41 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ∪ 𝑘 ∈ 𝐴 𝐵 ⊆ ( 𝑈 ∪ 𝑉 ) ) |
| 42 | 31 41 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → 𝐵 ⊆ ( 𝑈 ∪ 𝑉 ) ) |
| 43 | 19 20 21 22 26 28 40 42 | nconnsubb | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝑈 ) ) → ¬ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) |
| 44 | 43 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑃 ∈ 𝑈 → ¬ ( 𝐽 ↾t 𝐵 ) ∈ Conn ) ) |
| 45 | 18 44 | mt2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵 ) ) → ¬ 𝑃 ∈ 𝑈 ) |
| 46 | 45 | an4s | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) ∧ ( 𝑘 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → ¬ 𝑃 ∈ 𝑈 ) |
| 47 | 46 | exp32 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑘 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 → ¬ 𝑃 ∈ 𝑈 ) ) ) |
| 48 | 16 17 47 | rexlimd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ∃ 𝑘 ∈ 𝐴 𝑥 ∈ 𝐵 → ¬ 𝑃 ∈ 𝑈 ) ) |
| 49 | 14 48 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ∈ ∪ 𝑘 ∈ 𝐴 𝐵 → ¬ 𝑃 ∈ 𝑈 ) ) |
| 50 | 49 | expimpd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ ∪ 𝑘 ∈ 𝐴 𝐵 ) → ¬ 𝑃 ∈ 𝑈 ) ) |
| 51 | 13 50 | biimtrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵 ) → ¬ 𝑃 ∈ 𝑈 ) ) |
| 52 | 51 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑥 𝑥 ∈ ( 𝑉 ∩ ∪ 𝑘 ∈ 𝐴 𝐵 ) → ¬ 𝑃 ∈ 𝑈 ) ) |
| 53 | 12 52 | mpd | ⊢ ( 𝜑 → ¬ 𝑃 ∈ 𝑈 ) |