This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The coefficient vector of a univariate polynomial is a finitely supported mapping from the nonnegative integers to the elements of the coefficient class/ring for the polynomial. (Contributed by AV, 3-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1sfi.a | ⊢ 𝐴 = ( coe1 ‘ 𝐹 ) | |
| coe1sfi.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| coe1sfi.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| coe1sfi.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| coe1fvalcl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| Assertion | coe1fsupp | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 ∈ { 𝑔 ∈ ( 𝐾 ↑m ℕ0 ) ∣ 𝑔 finSupp 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1sfi.a | ⊢ 𝐴 = ( coe1 ‘ 𝐹 ) | |
| 2 | coe1sfi.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | coe1sfi.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 4 | coe1sfi.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | coe1fvalcl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 6 | breq1 | ⊢ ( 𝑔 = 𝐴 → ( 𝑔 finSupp 0 ↔ 𝐴 finSupp 0 ) ) | |
| 7 | 1 2 3 5 | coe1f | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 : ℕ0 ⟶ 𝐾 ) |
| 8 | 5 | fvexi | ⊢ 𝐾 ∈ V |
| 9 | nn0ex | ⊢ ℕ0 ∈ V | |
| 10 | 8 9 | pm3.2i | ⊢ ( 𝐾 ∈ V ∧ ℕ0 ∈ V ) |
| 11 | elmapg | ⊢ ( ( 𝐾 ∈ V ∧ ℕ0 ∈ V ) → ( 𝐴 ∈ ( 𝐾 ↑m ℕ0 ) ↔ 𝐴 : ℕ0 ⟶ 𝐾 ) ) | |
| 12 | 10 11 | mp1i | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐴 ∈ ( 𝐾 ↑m ℕ0 ) ↔ 𝐴 : ℕ0 ⟶ 𝐾 ) ) |
| 13 | 7 12 | mpbird | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 ∈ ( 𝐾 ↑m ℕ0 ) ) |
| 14 | 1 2 3 4 | coe1sfi | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |
| 15 | 6 13 14 | elrabd | ⊢ ( 𝐹 ∈ 𝐵 → 𝐴 ∈ { 𝑔 ∈ ( 𝐾 ↑m ℕ0 ) ∣ 𝑔 finSupp 0 } ) |