This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the corestriction of a class. (Contributed by BJ, 28-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvrescnv | ⊢ ◡ ( ◡ 𝑅 ↾ 𝐵 ) = ( 𝑅 ∩ ( V × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | ⊢ ( ◡ 𝑅 ↾ 𝐵 ) = ( ◡ 𝑅 ∩ ( 𝐵 × V ) ) | |
| 2 | 1 | cnveqi | ⊢ ◡ ( ◡ 𝑅 ↾ 𝐵 ) = ◡ ( ◡ 𝑅 ∩ ( 𝐵 × V ) ) |
| 3 | cnvin | ⊢ ◡ ( ◡ 𝑅 ∩ ( 𝐵 × V ) ) = ( ◡ ◡ 𝑅 ∩ ◡ ( 𝐵 × V ) ) | |
| 4 | cnvcnv | ⊢ ◡ ◡ 𝑅 = ( 𝑅 ∩ ( V × V ) ) | |
| 5 | cnvxp | ⊢ ◡ ( 𝐵 × V ) = ( V × 𝐵 ) | |
| 6 | 4 5 | ineq12i | ⊢ ( ◡ ◡ 𝑅 ∩ ◡ ( 𝐵 × V ) ) = ( ( 𝑅 ∩ ( V × V ) ) ∩ ( V × 𝐵 ) ) |
| 7 | inass | ⊢ ( ( 𝑅 ∩ ( V × V ) ) ∩ ( V × 𝐵 ) ) = ( 𝑅 ∩ ( ( V × V ) ∩ ( V × 𝐵 ) ) ) | |
| 8 | inxp | ⊢ ( ( V × V ) ∩ ( V × 𝐵 ) ) = ( ( V ∩ V ) × ( V ∩ 𝐵 ) ) | |
| 9 | inv1 | ⊢ ( V ∩ V ) = V | |
| 10 | 9 | eqcomi | ⊢ V = ( V ∩ V ) |
| 11 | ssv | ⊢ 𝐵 ⊆ V | |
| 12 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
| 13 | 11 12 | ssini | ⊢ 𝐵 ⊆ ( V ∩ 𝐵 ) |
| 14 | inss2 | ⊢ ( V ∩ 𝐵 ) ⊆ 𝐵 | |
| 15 | 13 14 | eqssi | ⊢ 𝐵 = ( V ∩ 𝐵 ) |
| 16 | 10 15 | xpeq12i | ⊢ ( V × 𝐵 ) = ( ( V ∩ V ) × ( V ∩ 𝐵 ) ) |
| 17 | 8 16 | eqtr4i | ⊢ ( ( V × V ) ∩ ( V × 𝐵 ) ) = ( V × 𝐵 ) |
| 18 | 17 | ineq2i | ⊢ ( 𝑅 ∩ ( ( V × V ) ∩ ( V × 𝐵 ) ) ) = ( 𝑅 ∩ ( V × 𝐵 ) ) |
| 19 | 6 7 18 | 3eqtri | ⊢ ( ◡ ◡ 𝑅 ∩ ◡ ( 𝐵 × V ) ) = ( 𝑅 ∩ ( V × 𝐵 ) ) |
| 20 | 2 3 19 | 3eqtri | ⊢ ◡ ( ◡ 𝑅 ↾ 𝐵 ) = ( 𝑅 ∩ ( V × 𝐵 ) ) |