This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003) (Proof shortened by BJ, 26-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvcnv | ⊢ ◡ ◡ 𝐴 = ( 𝐴 ∩ ( V × V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvin | ⊢ ◡ ( ◡ 𝐴 ∩ ◡ ( V × V ) ) = ( ◡ ◡ 𝐴 ∩ ◡ ◡ ( V × V ) ) | |
| 2 | cnvin | ⊢ ◡ ( 𝐴 ∩ ( V × V ) ) = ( ◡ 𝐴 ∩ ◡ ( V × V ) ) | |
| 3 | 2 | cnveqi | ⊢ ◡ ◡ ( 𝐴 ∩ ( V × V ) ) = ◡ ( ◡ 𝐴 ∩ ◡ ( V × V ) ) |
| 4 | relcnv | ⊢ Rel ◡ ◡ 𝐴 | |
| 5 | df-rel | ⊢ ( Rel ◡ ◡ 𝐴 ↔ ◡ ◡ 𝐴 ⊆ ( V × V ) ) | |
| 6 | 4 5 | mpbi | ⊢ ◡ ◡ 𝐴 ⊆ ( V × V ) |
| 7 | relxp | ⊢ Rel ( V × V ) | |
| 8 | dfrel2 | ⊢ ( Rel ( V × V ) ↔ ◡ ◡ ( V × V ) = ( V × V ) ) | |
| 9 | 7 8 | mpbi | ⊢ ◡ ◡ ( V × V ) = ( V × V ) |
| 10 | 6 9 | sseqtrri | ⊢ ◡ ◡ 𝐴 ⊆ ◡ ◡ ( V × V ) |
| 11 | dfss | ⊢ ( ◡ ◡ 𝐴 ⊆ ◡ ◡ ( V × V ) ↔ ◡ ◡ 𝐴 = ( ◡ ◡ 𝐴 ∩ ◡ ◡ ( V × V ) ) ) | |
| 12 | 10 11 | mpbi | ⊢ ◡ ◡ 𝐴 = ( ◡ ◡ 𝐴 ∩ ◡ ◡ ( V × V ) ) |
| 13 | 1 3 12 | 3eqtr4ri | ⊢ ◡ ◡ 𝐴 = ◡ ◡ ( 𝐴 ∩ ( V × V ) ) |
| 14 | relinxp | ⊢ Rel ( 𝐴 ∩ ( V × V ) ) | |
| 15 | dfrel2 | ⊢ ( Rel ( 𝐴 ∩ ( V × V ) ) ↔ ◡ ◡ ( 𝐴 ∩ ( V × V ) ) = ( 𝐴 ∩ ( V × V ) ) ) | |
| 16 | 14 15 | mpbi | ⊢ ◡ ◡ ( 𝐴 ∩ ( V × V ) ) = ( 𝐴 ∩ ( V × V ) ) |
| 17 | 13 16 | eqtri | ⊢ ◡ ◡ 𝐴 = ( 𝐴 ∩ ( V × V ) ) |