This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the corestriction of a class. (Contributed by BJ, 28-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvrescnv | |- `' ( `' R |` B ) = ( R i^i ( _V X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | |- ( `' R |` B ) = ( `' R i^i ( B X. _V ) ) |
|
| 2 | 1 | cnveqi | |- `' ( `' R |` B ) = `' ( `' R i^i ( B X. _V ) ) |
| 3 | cnvin | |- `' ( `' R i^i ( B X. _V ) ) = ( `' `' R i^i `' ( B X. _V ) ) |
|
| 4 | cnvcnv | |- `' `' R = ( R i^i ( _V X. _V ) ) |
|
| 5 | cnvxp | |- `' ( B X. _V ) = ( _V X. B ) |
|
| 6 | 4 5 | ineq12i | |- ( `' `' R i^i `' ( B X. _V ) ) = ( ( R i^i ( _V X. _V ) ) i^i ( _V X. B ) ) |
| 7 | inass | |- ( ( R i^i ( _V X. _V ) ) i^i ( _V X. B ) ) = ( R i^i ( ( _V X. _V ) i^i ( _V X. B ) ) ) |
|
| 8 | inxp | |- ( ( _V X. _V ) i^i ( _V X. B ) ) = ( ( _V i^i _V ) X. ( _V i^i B ) ) |
|
| 9 | inv1 | |- ( _V i^i _V ) = _V |
|
| 10 | 9 | eqcomi | |- _V = ( _V i^i _V ) |
| 11 | ssv | |- B C_ _V |
|
| 12 | ssid | |- B C_ B |
|
| 13 | 11 12 | ssini | |- B C_ ( _V i^i B ) |
| 14 | inss2 | |- ( _V i^i B ) C_ B |
|
| 15 | 13 14 | eqssi | |- B = ( _V i^i B ) |
| 16 | 10 15 | xpeq12i | |- ( _V X. B ) = ( ( _V i^i _V ) X. ( _V i^i B ) ) |
| 17 | 8 16 | eqtr4i | |- ( ( _V X. _V ) i^i ( _V X. B ) ) = ( _V X. B ) |
| 18 | 17 | ineq2i | |- ( R i^i ( ( _V X. _V ) i^i ( _V X. B ) ) ) = ( R i^i ( _V X. B ) ) |
| 19 | 6 7 18 | 3eqtri | |- ( `' `' R i^i `' ( B X. _V ) ) = ( R i^i ( _V X. B ) ) |
| 20 | 2 3 19 | 3eqtri | |- `' ( `' R |` B ) = ( R i^i ( _V X. B ) ) |