This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A central subgroup is normal. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cntrnsg.z | ⊢ 𝑍 = ( Cntr ‘ 𝑀 ) | |
| Assertion | cntrsubgnsg | ⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) → 𝑋 ∈ ( NrmSGrp ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntrnsg.z | ⊢ 𝑍 = ( Cntr ‘ 𝑀 ) | |
| 2 | simpl | ⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) → 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ) | |
| 3 | simplr | ⊢ ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑋 ) ) → 𝑋 ⊆ 𝑍 ) | |
| 4 | simprr | ⊢ ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) | |
| 5 | 3 4 | sseldd | ⊢ ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑍 ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 7 | eqid | ⊢ ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 ) | |
| 8 | 6 7 | cntrval | ⊢ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) = ( Cntr ‘ 𝑀 ) |
| 9 | 8 1 | eqtr4i | ⊢ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) = 𝑍 |
| 10 | 5 9 | eleqtrrdi | ⊢ ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) ) |
| 11 | simprl | ⊢ ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) | |
| 12 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 13 | 12 7 | cntzi | ⊢ ( ( 𝑦 ∈ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 14 | 10 11 13 | syl2anc | ⊢ ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 15 | 14 | oveq1d | ⊢ ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( -g ‘ 𝑀 ) 𝑥 ) = ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( -g ‘ 𝑀 ) 𝑥 ) ) |
| 16 | subgrcl | ⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) → 𝑀 ∈ Grp ) | |
| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑋 ) ) → 𝑀 ∈ Grp ) |
| 18 | 6 | subgss | ⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑋 ) ) → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) |
| 20 | 19 4 | sseldd | ⊢ ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ∈ ( Base ‘ 𝑀 ) ) |
| 21 | eqid | ⊢ ( -g ‘ 𝑀 ) = ( -g ‘ 𝑀 ) | |
| 22 | 6 12 21 | grppncan | ⊢ ( ( 𝑀 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( -g ‘ 𝑀 ) 𝑥 ) = 𝑦 ) |
| 23 | 17 20 11 22 | syl3anc | ⊢ ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( -g ‘ 𝑀 ) 𝑥 ) = 𝑦 ) |
| 24 | 15 23 | eqtr3d | ⊢ ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( -g ‘ 𝑀 ) 𝑥 ) = 𝑦 ) |
| 25 | 24 4 | eqeltrd | ⊢ ( ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( -g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) |
| 26 | 25 | ralrimivva | ⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( -g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) |
| 27 | 6 12 21 | isnsg3 | ⊢ ( 𝑋 ∈ ( NrmSGrp ‘ 𝑀 ) ↔ ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑀 ) ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( -g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) ) |
| 28 | 2 26 27 | sylanbrc | ⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑋 ⊆ 𝑍 ) → 𝑋 ∈ ( NrmSGrp ‘ 𝑀 ) ) |