This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A central subgroup is normal. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cntrnsg.z | |- Z = ( Cntr ` M ) |
|
| Assertion | cntrsubgnsg | |- ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) -> X e. ( NrmSGrp ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntrnsg.z | |- Z = ( Cntr ` M ) |
|
| 2 | simpl | |- ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) -> X e. ( SubGrp ` M ) ) |
|
| 3 | simplr | |- ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> X C_ Z ) |
|
| 4 | simprr | |- ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> y e. X ) |
|
| 5 | 3 4 | sseldd | |- ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> y e. Z ) |
| 6 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 7 | eqid | |- ( Cntz ` M ) = ( Cntz ` M ) |
|
| 8 | 6 7 | cntrval | |- ( ( Cntz ` M ) ` ( Base ` M ) ) = ( Cntr ` M ) |
| 9 | 8 1 | eqtr4i | |- ( ( Cntz ` M ) ` ( Base ` M ) ) = Z |
| 10 | 5 9 | eleqtrrdi | |- ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> y e. ( ( Cntz ` M ) ` ( Base ` M ) ) ) |
| 11 | simprl | |- ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> x e. ( Base ` M ) ) |
|
| 12 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 13 | 12 7 | cntzi | |- ( ( y e. ( ( Cntz ` M ) ` ( Base ` M ) ) /\ x e. ( Base ` M ) ) -> ( y ( +g ` M ) x ) = ( x ( +g ` M ) y ) ) |
| 14 | 10 11 13 | syl2anc | |- ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> ( y ( +g ` M ) x ) = ( x ( +g ` M ) y ) ) |
| 15 | 14 | oveq1d | |- ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> ( ( y ( +g ` M ) x ) ( -g ` M ) x ) = ( ( x ( +g ` M ) y ) ( -g ` M ) x ) ) |
| 16 | subgrcl | |- ( X e. ( SubGrp ` M ) -> M e. Grp ) |
|
| 17 | 16 | ad2antrr | |- ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> M e. Grp ) |
| 18 | 6 | subgss | |- ( X e. ( SubGrp ` M ) -> X C_ ( Base ` M ) ) |
| 19 | 18 | ad2antrr | |- ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> X C_ ( Base ` M ) ) |
| 20 | 19 4 | sseldd | |- ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> y e. ( Base ` M ) ) |
| 21 | eqid | |- ( -g ` M ) = ( -g ` M ) |
|
| 22 | 6 12 21 | grppncan | |- ( ( M e. Grp /\ y e. ( Base ` M ) /\ x e. ( Base ` M ) ) -> ( ( y ( +g ` M ) x ) ( -g ` M ) x ) = y ) |
| 23 | 17 20 11 22 | syl3anc | |- ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> ( ( y ( +g ` M ) x ) ( -g ` M ) x ) = y ) |
| 24 | 15 23 | eqtr3d | |- ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> ( ( x ( +g ` M ) y ) ( -g ` M ) x ) = y ) |
| 25 | 24 4 | eqeltrd | |- ( ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) /\ ( x e. ( Base ` M ) /\ y e. X ) ) -> ( ( x ( +g ` M ) y ) ( -g ` M ) x ) e. X ) |
| 26 | 25 | ralrimivva | |- ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) -> A. x e. ( Base ` M ) A. y e. X ( ( x ( +g ` M ) y ) ( -g ` M ) x ) e. X ) |
| 27 | 6 12 21 | isnsg3 | |- ( X e. ( NrmSGrp ` M ) <-> ( X e. ( SubGrp ` M ) /\ A. x e. ( Base ` M ) A. y e. X ( ( x ( +g ` M ) y ) ( -g ` M ) x ) e. X ) ) |
| 28 | 2 26 27 | sylanbrc | |- ( ( X e. ( SubGrp ` M ) /\ X C_ Z ) -> X e. ( NrmSGrp ` M ) ) |