This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntrval.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntrval.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | cntrval | ⊢ ( 𝑍 ‘ 𝐵 ) = ( Cntr ‘ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntrval.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntrval.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 3 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( Cntz ‘ 𝑚 ) = ( Cntz ‘ 𝑀 ) ) | |
| 4 | 3 2 | eqtr4di | ⊢ ( 𝑚 = 𝑀 → ( Cntz ‘ 𝑚 ) = 𝑍 ) |
| 5 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = 𝐵 ) |
| 7 | 4 6 | fveq12d | ⊢ ( 𝑚 = 𝑀 → ( ( Cntz ‘ 𝑚 ) ‘ ( Base ‘ 𝑚 ) ) = ( 𝑍 ‘ 𝐵 ) ) |
| 8 | df-cntr | ⊢ Cntr = ( 𝑚 ∈ V ↦ ( ( Cntz ‘ 𝑚 ) ‘ ( Base ‘ 𝑚 ) ) ) | |
| 9 | fvex | ⊢ ( 𝑍 ‘ 𝐵 ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( 𝑀 ∈ V → ( Cntr ‘ 𝑀 ) = ( 𝑍 ‘ 𝐵 ) ) |
| 11 | 10 | eqcomd | ⊢ ( 𝑀 ∈ V → ( 𝑍 ‘ 𝐵 ) = ( Cntr ‘ 𝑀 ) ) |
| 12 | 0fv | ⊢ ( ∅ ‘ 𝐵 ) = ∅ | |
| 13 | fvprc | ⊢ ( ¬ 𝑀 ∈ V → ( Cntz ‘ 𝑀 ) = ∅ ) | |
| 14 | 2 13 | eqtrid | ⊢ ( ¬ 𝑀 ∈ V → 𝑍 = ∅ ) |
| 15 | 14 | fveq1d | ⊢ ( ¬ 𝑀 ∈ V → ( 𝑍 ‘ 𝐵 ) = ( ∅ ‘ 𝐵 ) ) |
| 16 | fvprc | ⊢ ( ¬ 𝑀 ∈ V → ( Cntr ‘ 𝑀 ) = ∅ ) | |
| 17 | 12 15 16 | 3eqtr4a | ⊢ ( ¬ 𝑀 ∈ V → ( 𝑍 ‘ 𝐵 ) = ( Cntr ‘ 𝑀 ) ) |
| 18 | 11 17 | pm2.61i | ⊢ ( 𝑍 ‘ 𝐵 ) = ( Cntr ‘ 𝑀 ) |