This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The center of a group is a normal subgroup. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cntrnsg.z | ⊢ 𝑍 = ( Cntr ‘ 𝑀 ) | |
| Assertion | cntrnsg | ⊢ ( 𝑀 ∈ Grp → 𝑍 ∈ ( NrmSGrp ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntrnsg.z | ⊢ 𝑍 = ( Cntr ‘ 𝑀 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 3 | eqid | ⊢ ( Cntz ‘ 𝑀 ) = ( Cntz ‘ 𝑀 ) | |
| 4 | 2 3 | cntrval | ⊢ ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) = ( Cntr ‘ 𝑀 ) |
| 5 | 1 4 | eqtr4i | ⊢ 𝑍 = ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) |
| 6 | ssid | ⊢ ( Base ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) | |
| 7 | 2 3 | cntzsubg | ⊢ ( ( 𝑀 ∈ Grp ∧ ( Base ‘ 𝑀 ) ⊆ ( Base ‘ 𝑀 ) ) → ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) ∈ ( SubGrp ‘ 𝑀 ) ) |
| 8 | 6 7 | mpan2 | ⊢ ( 𝑀 ∈ Grp → ( ( Cntz ‘ 𝑀 ) ‘ ( Base ‘ 𝑀 ) ) ∈ ( SubGrp ‘ 𝑀 ) ) |
| 9 | 5 8 | eqeltrid | ⊢ ( 𝑀 ∈ Grp → 𝑍 ∈ ( SubGrp ‘ 𝑀 ) ) |
| 10 | ssid | ⊢ 𝑍 ⊆ 𝑍 | |
| 11 | 1 | cntrsubgnsg | ⊢ ( ( 𝑍 ∈ ( SubGrp ‘ 𝑀 ) ∧ 𝑍 ⊆ 𝑍 ) → 𝑍 ∈ ( NrmSGrp ‘ 𝑀 ) ) |
| 12 | 9 10 11 | sylancl | ⊢ ( 𝑀 ∈ Grp → 𝑍 ∈ ( NrmSGrp ‘ 𝑀 ) ) |